我有一些数据,
calvarbyruno.1<-structure(list(Nominal = c(1, 3, 6, 10, 30, 50, 150, 250), Run = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("1", "2", "3"), class = "factor"),
PAR = c(1.25000000000000e-05, 0.000960333333333333, 0.00205833333333334,
0.00423333333333333, 0.0322333333333334, 0.614433333333334,
1.24333333333333, 1.86333333333333), PredLin = c(-0.0119152187070942,
0.00375925114245899, 0.0272709559167888, 0.0586198956158952,
0.215364594111427, 0.372109292606959, 1.15583278508462, 1.93955627756228
), PredQuad = c(-0.0615895732702735, -0.0501563307416599,
-0.0330831368244257, -0.0104619953693943, 0.100190275883806,
0.20675348710041, 0.6782336426345, 1.04748729725370)), .Names = c("Nominal",
"Run", "PAR", "PredLin", "PredQuad"), row.names = c(NA, 8L), class = "data.frame")
calweight <- -2
我为其创建了线性和二次lm模型
callin.1<-lm(PAR~Nominal,data=calvarbyruno.1,weight=Nominal^calweight)
calquad.1<-lm(PAR~Nominal+I(Nominal^2),data=calvarbyruno.1,weight=Nominal^calweight)
然后我可以使用ggplot2
绘制我的数据值qplot(PAR,Nominal,data=calvarbyruno.1)
但是无法弄清楚如何覆盖代表两个lm对象的线......任何想法?
答案 0 :(得分:30)
最简单的选择是使用geom_smooth()并让ggplot2适合您的模型。
ggplot(calvarbyruno.1, aes(y = PAR, x = Nominal, weight=Nominal^calweight)) +
geom_smooth(method = "lm") +
geom_smooth(method = "lm", formula = y ~ poly(x, 2), colour = "red") +
geom_point() +
coord_flip()
或者您可以使用预测值创建新数据集。
newdata <- data.frame(Nominal = pretty(calvarbyruno.1$Nominal, 100))
newdata$Linear <- predict(callin.1, newdata = newdata)
newdata$Quadratic <- predict(calquad.1, newdata = newdata)
require(reshape2)
newdata <- melt(newdata, id.vars = "Nominal", variable.name = "Model")
ggplot(calvarbyruno.1, aes(x = PAR, y = Nominal, weight=Nominal^calweight)) +
geom_line(data = newdata, aes(x = value, colour = Model)) +
geom_point()
答案 1 :(得分:10)
早些时候我问了一个相关的问题,哈德利有this good answer。使用该帖子中的预测函数,您可以为数据添加两列。每个型号一个:
calvarbyruno.1$calQuad <- predict(calquad.1)
calvarbyruno.1$callin <- predict(callin.1)
然后,这是绘制点并将每个模型添加为一行的问题:
ggplot() +
geom_point(data=calvarbyruno.1, aes(PAR, Nominal), colour="green") +
geom_line(data=calvarbyruno.1, aes(calQuad, Nominal), colour="red" ) +
geom_line(data=calvarbyruno.1, aes(callin, Nominal), colour="blue" ) +
opts(aspect.ratio = 1)
这导致了这张漂亮的图片(是的,颜色可以使用一些工作):