我有一个元素列表,我想要一个对象,它给了我所有可能的方法将这些元素分成给定数量的相同大小的组。
例如,这是我的清单:
MyElements <- c(1,2,3,4)
我希望所有可能的组合将它们分成两组:
nb.groups <- 2
答案可能就是这样:
[[1]]
[1] 1,2
[2] 3,4
[[2]]
[1] 1,3
[2] 2,4
[[3]]
[1] 2,3
[2] 1,4
我想避免重复那种:
[[1]]
[1] 1,2
[2] 3,4
[[2]]
[1] 3,4
[2] 1,2
非常感谢!
感谢您的回答。我想我应该给你更多关于我想要实现的信息。
列表(或矢量,因为很明显MyElements是矢量)实际上是个人的ID号。我想列出所有可能的方法,将这些个体分成所需数量的组,这些组都具有相同的大小。
如果我没有弄错的话,目前实际工作的唯一解决方案是来自朱巴的所谓蛮力和肮脏的解决方案。但正如朱巴所说,它变得很快(为了我的目的太快了!)无法使用。
再次感谢
答案 0 :(得分:5)
遵循递归逻辑,您可以在不重复的情况下计算所有组合,而无需先计算所有组合。只要choose(nx-1,ning-1)返回一个整数,它就能很好用。如果没有,计算可能性有点荒谬。
这是一个递归过程,所以它可能需要很长时间,当你的向量超过一定限度时会导致内存问题。但话又说回来,将一组14个元素分成7组,已经有135135个独特的可能性。在这些事情上,事情变得非常迅速。
伪事物中的逻辑(不会称之为伪代码)
nb = number of groups
ning = number of elements in every group
if(nb == 2)
1. take first element, and add it to every possible
combination of ning-1 elements of x[-1]
2. make the difference for each group defined in step 1 and x
to get the related second group
3. combine the groups from step 2 with the related groups from step 1
if(nb > 2)
1. take first element, and add it to every possible
combination of ning-1 elements of x[-1]
2. to define the other groups belonging to the first groups obtained like this,
apply the algorithm on the other elements of x, but for nb-1 groups
3. combine all possible other groups from step 2
with the related first groups from step 1
将此翻译为R会给我们:
perm.groups <- function(x,n){
nx <- length(x)
ning <- nx/n
group1 <-
rbind(
matrix(rep(x[1],choose(nx-1,ning-1)),nrow=1),
combn(x[-1],ning-1)
)
ng <- ncol(group1)
if(n > 2){
out <- vector('list',ng)
for(i in seq_len(ng)){
other <- perm.groups(setdiff(x,group1[,i]),n=n-1)
out[[i]] <- lapply(seq_along(other),
function(j) cbind(group1[,i],other[[j]])
)
}
out <- unlist(out,recursive=FALSE)
} else {
other <- lapply(seq_len(ng),function(i)
matrix(setdiff(x,group1[,i]),ncol=1)
)
out <- lapply(seq_len(ng),
function(i) cbind(group1[,i],other[[i]])
)
}
out
}
显示它有效:
> perm.groups(1:6,3)
[[1]]
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
[[2]]
[,1] [,2] [,3]
[1,] 1 3 4
[2,] 2 5 6
[[3]]
[,1] [,2] [,3]
[1,] 1 3 4
[2,] 2 6 5
[[4]]
[,1] [,2] [,3]
[1,] 1 2 5
[2,] 3 4 6
[[5]]
[,1] [,2] [,3]
[1,] 1 2 4
[2,] 3 5 6
[[6]]
[,1] [,2] [,3]
[1,] 1 2 4
[2,] 3 6 5
[[7]]
[,1] [,2] [,3]
[1,] 1 2 5
[2,] 4 3 6
[[8]]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[[9]]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 6 5
[[10]]
[,1] [,2] [,3]
[1,] 1 2 4
[2,] 5 3 6
[[11]]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 5 4 6
[[12]]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 5 6 4
[[13]]
[,1] [,2] [,3]
[1,] 1 2 4
[2,] 6 3 5
[[14]]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 6 4 5
[[15]]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 6 5 4
答案 1 :(得分:1)
这里是一个基于分离柱构造的解决方案。
x <- 1:4
a <- as.data.frame(t(combn(x,length(x)/2))
a$sum <- abs(rowSums(a)-mean(rowSums(a)))
lapply(split(a,a$sum),function(x) if(dim(x)[1]>2)
split(x,1:(dim(x)[1]/2))
else
x)
$`0`
V1 V2 sum
3 1 4 0
4 2 3 0
$`1`
V1 V2 sum
2 1 3 1
5 2 4 1
$`2`
V1 V2 sum
1 1 2 2
6 3 4 2
答案 2 :(得分:0)
这是一个强力和肮脏的解决方案,可能适用于不同数量的组,但你真的应该在使用前测试它。此外,因为它使用permn
,它将无法使用,具体取决于矢量的大小:
library(combinat)
split.groups <- function(x, nb.groups) {
length.groups <- length(x)/nb.groups
perm <- permn(x)
perm <- lapply(perm, function(v) {
m <- as.data.frame(matrix(v, length.groups, nb.groups))
m <- apply(m,2,sort)
m <- t(m)
m <- m[order(m[,1]),]
rownames(m) <- NULL
m})
unique(perm)
}
例如:
R> split.groups(1:4, 2)
[[1]]
[,1] [,2]
[1,] 1 2
[2,] 3 4
[[2]]
[,1] [,2]
[1,] 1 4
[2,] 2 3
[[3]]
[,1] [,2]
[1,] 1 3
[2,] 2 4
或者:
R> split.groups(1:6, 3)
[[1]]
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[[2]]
[,1] [,2]
[1,] 1 2
[2,] 3 6
[3,] 4 5
[[3]]
[,1] [,2]
[1,] 1 6
[2,] 2 3
[3,] 4 5
[[4]]
[,1] [,2]
[1,] 1 2
[2,] 3 5
[3,] 4 6
[[5]]
[,1] [,2]
[1,] 1 6
[2,] 2 5
[3,] 3 4
[[6]]
[,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 4
[[7]]
[,1] [,2]
[1,] 1 5
[2,] 2 3
[3,] 4 6
[[8]]
[,1] [,2]
[1,] 1 5
[2,] 2 4
[3,] 3 6
[[9]]
[,1] [,2]
[1,] 1 6
[2,] 2 4
[3,] 3 5
[[10]]
[,1] [,2]
[1,] 1 4
[2,] 2 3
[3,] 5 6
[[11]]
[,1] [,2]
[1,] 1 4
[2,] 2 6
[3,] 3 5
[[12]]
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
[[13]]
[,1] [,2]
[1,] 1 3
[2,] 2 5
[3,] 4 6
[[14]]
[,1] [,2]
[1,] 1 3
[2,] 2 6
[3,] 4 5
[[15]]
[,1] [,2]
[1,] 1 3
[2,] 2 4
[3,] 5 6