获取列名称,其中value是pandas dataframe中的值

时间:2013-02-06 17:04:04

标签: python dataframe pandas

我试图在每个时间戳找到数据框中的列名,其值与同一时间戳的时间序列中的列匹配。

这是我的数据框:

>>> df
                            col5        col4        col3        col2        col1
1979-01-01 00:00:00  1181.220328  912.154923  648.848635  390.986156  138.185861
1979-01-01 06:00:00  1190.724461  920.767974  657.099560  399.395338  147.761352
1979-01-01 12:00:00  1193.414510  918.121482  648.558837  384.632475  126.254342
1979-01-01 18:00:00  1171.670276  897.585930  629.201469  366.652033  109.545607
1979-01-02 00:00:00  1168.892579  900.375126  638.377583  382.584568  132.998706

>>> df.to_dict()
{'col4': {<Timestamp: 1979-01-01 06:00:00>: 920.76797370744271, <Timestamp: 1979-01-01 00:00:00>: 912.15492332839756, <Timestamp: 1979-01-01 18:00:00>: 897.58592995700656, <Timestamp: 1979-01-01 12:00:00>: 918.1214819496729}, 'col5': {<Timestamp: 1979-01-01 06:00:00>: 1190.7244605667831, <Timestamp: 1979-01-01 00:00:00>: 1181.2203275146587, <Timestamp: 1979-01-01 18:00:00>: 1171.6702763228691, <Timestamp: 1979-01-01 12:00:00>: 1193.4145103184442}, 'col2': {<Timestamp: 1979-01-01 06:00:00>: 399.39533771666561, <Timestamp: 1979-01-01 00:00:00>: 390.98615646597591, <Timestamp: 1979-01-01 18:00:00>: 366.65203285812231, <Timestamp: 1979-01-01 12:00:00>: 384.63247469269874}, 'col3': {<Timestamp: 1979-01-01 06:00:00>: 657.09956023625466, <Timestamp: 1979-01-01 00:00:00>: 648.84863460462293, <Timestamp: 1979-01-01 18:00:00>: 629.20146872682449, <Timestamp: 1979-01-01 12:00:00>: 648.55883747413225}, 'col1': {<Timestamp: 1979-01-01 06:00:00>: 147.7613518219286, <Timestamp: 1979-01-01 00:00:00>: 138.18586102094068, <Timestamp: 1979-01-01 18:00:00>: 109.54560722575859, <Timestamp: 1979-01-01 12:00:00>: 126.25434189361377}}

包含我想在每个时间戳匹配的值的时间序列:

>>> ts
1979-01-01 00:00:00    1181.220328
1979-01-01 06:00:00    657.099560
1979-01-01 12:00:00    126.254342
1979-01-01 18:00:00    109.545607
Freq: 6H

>>> ts.to_dict()
{<Timestamp: 1979-01-01 06:00:00>: 657.09956023625466, <Timestamp: 1979-01-01 00:00:00>: 1181.2203275146587, <Timestamp: 1979-01-01 18:00:00>: 109.54560722575859, <Timestamp: 1979-01-01 12:00:00>: 126.25434189361377}

然后结果将是:

>>> df_result
                             value  Column
1979-01-01 00:00:00    1181.220328  col5
1979-01-01 06:00:00    657.099560   col3
1979-01-01 12:00:00    126.254342   col1
1979-01-01 18:00:00    109.545607   col1

我希望我的问题足够明确。任何人都知道如何获得df_result?

由于

格雷格

4 个答案:

答案 0 :(得分:8)

这是一种,也许是不优雅的方式:

df_result = pd.DataFrame(ts, columns=['value'])

设置一个函数,用于获取包含值的列名(来自ts):

def get_col_name(row):    
    b = (df.ix[row.name] == row['value'])
    return b.index[b.argmax()]
每行

,测试哪些元素等于该值,并提取True的列名。

apply它(行方式):

In [3]: df_result.apply(get_col_name, axis=1)
Out[3]: 
1979-01-01 00:00:00    col5
1979-01-01 06:00:00    col3
1979-01-01 12:00:00    col1
1979-01-01 18:00:00    col1

即。使用df_result['Column'] = df_result.apply(get_col_name, axis=1)

注意:get_col_name中有相当多的事情发生,所以它可能需要进一步解释:

In [4]: row = df_result.irow(0) # an example row to pass to get_col_name

In [5]: row
Out[5]: 
value    1181.220328
Name: 1979-01-01 00:00:00

In [6]: row.name # use to get rows of df
Out[6]: <Timestamp: 1979-01-01 00:00:00>

In [7]: df.ix[row.name]
Out[7]: 
col5    1181.220328
col4     912.154923
col3     648.848635
col2     390.986156
col1     138.185861
Name: 1979-01-01 00:00:00

In [8]: b = (df.ix[row.name] == row['value'])
        #checks whether each elements equal row['value'] = 1181.220328  

In [9]: b
Out[9]: 
col5     True
col4    False
col3    False
col2    False
col1    False
Name: 1979-01-01 00:00:00

In [10]: b.argmax() # index of a True value
Out[10]: 0

In [11]: b.index[b.argmax()] # the index value (column name)
Out[11]: 'col5'

可能有更有效的方法来做到这一点......

答案 1 :(得分:6)

根据Andy的详细答案,选择每行最高值的列名称的解决方案可以简化为一行:

df['column'] = df.apply(lambda x: df.columns[x.argmax()], axis = 1)

答案 2 :(得分:4)

只是想补充一下,如果多个列可能具有该值并且您想要 all 列表中的列名称,则可以执行以下操作(例如对于要获取所有值= 1)的列的情况:

df.apply(lambda row: row[row == 1].index, axis=1)

这个想法是,您将每一行变成一个系列(通过添加axis = 1),其中列名现在变成了该系列的索引。然后,您使用条件(例如row == 1)过滤系列,然后获取索引值(也就是列名!)。

答案 3 :(得分:1)

我试图创建一个新列来指示哪个现有列具有最大的行值。这给了我所需的字符串列标签:

df['column_with_biggest_value'] = df.idxmax(axis=1)