我想做的是获取我的号码的每一半的中间位置。 所以我已经创建了一种方法来获得数字的中间值(数学术语的中位数);
public static String Find_Median()
{
double Size = list.Count;
double Final_Number = 0;
if (Size % 2 == 0)
{
int HalfWay = list.Count / 2;
double Value1 = Convert.ToDouble(list[HalfWay - 1].ToString());
double Value2 = Convert.ToDouble(list[HalfWay - 1 + 1].ToString());
double Number = Value1 + Value2;
Final_Number = Number / 2;
}
else
{
int HalfWay = list.Count / 2;
double Value1 = Convert.ToDouble(list[HalfWay].ToString());
Final_Number = Value1;
}
return Convert.ToString(Final_Number);
}
得到列表中所有数字的确切中间数,即使它到达中间也会进行数学运算。 我想双方都这样做;这是一个例子;
3 2 1 4 5 6
该列表的中间(中位数)为3.5。 我想用数学来找到2,它位于等式的开始和中间之间。也称为IQR中的Q1。我也想知道如何在中位数(中间)和结尾之间找到中间数字,即5。
即。所以我可以找到70,80和90代码。
答案 0 :(得分:7)
我刚遇到同样的问题,并检查wikipedia entry for Quartile,它比第一次出现的要复杂一些。
我的方法如下:(对于所有情况似乎都很好,N = 1)...
/// <summary>
/// Return the quartile values of an ordered set of doubles
/// assume the sorting has already been done.
///
/// This actually turns out to be a bit of a PITA, because there is no universal agreement
/// on choosing the quartile values. In the case of odd values, some count the median value
/// in finding the 1st and 3rd quartile and some discard the median value.
/// the two different methods result in two different answers.
/// The below method produces the arithmatic mean of the two methods, and insures the median
/// is given it's correct weight so that the median changes as smoothly as possible as
/// more data ppints are added.
///
/// This method uses the following logic:
///
/// ===If there are an even number of data points:
/// Use the median to divide the ordered data set into two halves.
/// The lower quartile value is the median of the lower half of the data.
/// The upper quartile value is the median of the upper half of the data.
///
/// ===If there are (4n+1) data points:
/// The lower quartile is 25% of the nth data value plus 75% of the (n+1)th data value.
/// The upper quartile is 75% of the (3n+1)th data point plus 25% of the (3n+2)th data point.
///
///===If there are (4n+3) data points:
/// The lower quartile is 75% of the (n+1)th data value plus 25% of the (n+2)th data value.
/// The upper quartile is 25% of the (3n+2)th data point plus 75% of the (3n+3)th data point.
///
/// </summary>
internal Tuple<double, double, double> Quartiles(double[] afVal)
{
int iSize = afVal.Length;
int iMid = iSize / 2; //this is the mid from a zero based index, eg mid of 7 = 3;
double fQ1 = 0;
double fQ2 = 0;
double fQ3 = 0;
if (iSize % 2 == 0)
{
//================ EVEN NUMBER OF POINTS: =====================
//even between low and high point
fQ2 = (afVal[iMid - 1] + afVal[iMid]) / 2;
int iMidMid = iMid / 2;
//easy split
if (iMid % 2 == 0)
{
fQ1 = (afVal[iMidMid - 1] + afVal[iMidMid]) / 2;
fQ3 = (afVal[iMid + iMidMid - 1] + afVal[iMid + iMidMid]) / 2;
}
else
{
fQ1 = afVal[iMidMid];
fQ3 = afVal[iMidMid + iMid];
}
}
else if (iSize == 1)
{
//================= special case, sorry ================
fQ1 = afVal[0];
fQ2 = afVal[0];
fQ3 = afVal[0];
}
else
{
//odd number so the median is just the midpoint in the array.
fQ2 = afVal[iMid];
if ((iSize - 1) % 4 == 0)
{
//======================(4n-1) POINTS =========================
int n = (iSize - 1) / 4;
fQ1 = (afVal[n - 1] * .25) + (afVal[n] * .75);
fQ3 = (afVal[3 * n] * .75) + (afVal[3 * n + 1] * .25);
}
else if ((iSize - 3) % 4 == 0)
{
//======================(4n-3) POINTS =========================
int n = (iSize - 3) / 4;
fQ1 = (afVal[n] * .75) + (afVal[n + 1] * .25);
fQ3 = (afVal[3 * n + 1] * .25) + (afVal[3 * n + 2] * .75);
}
}
return new Tuple<double, double, double>(fQ1, fQ2, fQ3);
}
有多种计算季数的方法:
我在这里尽力实现Quartiles的版本,在R文档中描述为type = 8 Quartile(array, type=8)
:https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/quantile。 R函数的作者described here首选这种方法,因为它可以在值之间产生更平滑的过渡。但是,R默认为方法7,这与S和Excel使用的功能相同。
如果你只是谷歌搜索答案而不考虑输出意味着什么,或者你想要达到什么结果,这可能会给你一个惊喜。
答案 1 :(得分:3)
在以下列表中运行相同的方法:
list1 = list.Where(x => x < Median)
list2 = list.Where(x => x > Median)
Find_Medium(list1)
将首先返回Quartile,
Find_Medium(list2)
将返回第三个Quartile
答案 2 :(得分:0)
我知道这是一个老问题,所以我辩论了一段时间是否应该添加下面的答案,并且由于投票最多的答案与Excel Quartile的数字不匹配,因此我决定在下面发布答案。 / p>
在尝试绘制直方图并创建bin宽度和范围时,我还需要找到第一和第三四分位数。我使用的是Freedman–Diaconis规则,该规则要求知道第一和第三四分位数。我从Mike's answer开始。
但是在数据验证过程中,我注意到结果与Excel中四分位数的计算方法和使用Ploltly创建的直方图的方式不匹配,因此我进一步研究并偶然发现了以下两个链接:
第二个链接中的幻灯片12表示“ Pth百分位的位置由(n + 1)P/100
给出,其中n是集合中观察的数目。”
因此,C# Descriptive Statistic Class中的等效C#代码为:
/// <summary>
/// Calculate percentile of a sorted data set
/// </summary>
/// <param name="sortedData"></param>
/// <param name="p"></param>
/// <returns></returns>
internal static double Percentile(double[] sortedData, double p)
{
// algo derived from Aczel pg 15 bottom
if (p >= 100.0d) return sortedData[sortedData.Length - 1];
double position = (sortedData.Length + 1) * p / 100.0;
double leftNumber = 0.0d, rightNumber = 0.0d;
double n = p / 100.0d * (sortedData.Length - 1) + 1.0d;
if (position >= 1)
{
leftNumber = sortedData[(int)Math.Floor(n) - 1];
rightNumber = sortedData[(int)Math.Floor(n)];
}
else
{
leftNumber = sortedData[0]; // first data
rightNumber = sortedData[1]; // first data
}
//if (leftNumber == rightNumber)
if (Equals(leftNumber, rightNumber))
return leftNumber;
double part = n - Math.Floor(n);
return leftNumber + part * (rightNumber - leftNumber);
} // end of internal function percentile
测试用例(用Visual Studio 2017编写):
static void Main()
{
double[] x = { 18, 18, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 24, 26, 27, 32, 33, 49, 52, 56 };
var q1 = Percentile(x, 25);
var q2 = Percentile(x, 50);
var q3 = Percentile(x, 75);
var iqr = q3 - q1;
var (q1_mike, q2_mike, q3_mike) = Quartiles(x); //Uses named tuples instead of regular Tuple
var iqr_mike = q3_mike - q1_mike;
}
结果比较:
您会注意到excel的结果与幻灯片12中提到的Statistics的理论相符。
答案 3 :(得分:0)
一种可以调整的快捷方式
var q3 = table.Skip(table.Length * 3 / 4).Take(1);
var q1 = table.Skip(table.Length * 1 / 4).Take(1);