如果我将一个大目录存储为pickle
文件,是否通过cPickle
加载它意味着它将全部被一次性地存入内存?
如果是这样,是否有一种跨平台方式来获取类似pickle
的内容,但是在一个项目中访问每个条目一个键(即避免将所有字典加载到内存中,只按名称加载每个条目)?我知道shelve
应该这样做:虽然可以像pickle
那样可移植吗?
答案 0 :(得分:21)
我知道shelve应该这样做:虽然像腌菜那样便携吗?
是。 shelve
是The Python Standard Library的一部分,用Python编写。
所以如果你有一本大字典:
bigd = {'a': 1, 'b':2, # . . .
}
并且你想保存它而不必在以后读取整个内容然后不将其保存为泡菜,最好将其保存为一个架子,一种在磁盘字典上。
import shelve
myShelve = shelve.open('my.shelve')
myShelve.update(bigd)
myShelve.close()
然后您可以:
import shelve
myShelve = shelve.open('my.shelve')
value = myShelve['a']
value += 1
myShelve['a'] = value
您基本上将搁置对象视为dict,但这些项目存储在磁盘上(作为单独的pickle)并根据需要读入。
如果您的对象可以存储为属性列表,那么sqlite可能是一个不错的选择。货架和泡菜很方便,但只能通过Python访问,但sqlite数据库可以从大多数语言中读取。
答案 1 :(得分:6)
如果您想要一个比shelve
更强大的模块,您可以查看klepto
。 klepto
用于为磁盘或数据库上与平台无关的存储提供字典接口,并且可以处理大数据。
在这里,我们首先创建一些存储在磁盘上的pickle对象。他们使用dir_archive
,每个文件存储一个对象。
>>> d = dict(zip('abcde',range(5)))
>>> d['f'] = max
>>> d['g'] = lambda x:x**2
>>>
>>> import klepto
>>> help(klepto.archives.dir_archive)
>>> print klepto.archives.dir_archive.__new__.__doc__
initialize a dictionary with a file-folder archive backend
Inputs:
name: name of the root archive directory [default: memo]
dict: initial dictionary to seed the archive
cached: if True, use an in-memory cache interface to the archive
serialized: if True, pickle file contents; otherwise save python objects
compression: compression level (0 to 9) [default: 0 (no compression)]
memmode: access mode for files, one of {None, 'r+', 'r', 'w+', 'c'}
memsize: approximate size (in MB) of cache for in-memory compression
>>> a = klepto.archives.dir_archive(dict=d)
>>> a
dir_archive('memo', {'a': 0, 'c': 2, 'b': 1, 'e': 4, 'd': 3, 'g': <function <lambda> at 0x102f562a8>, 'f': <built-in function max>}, cached=True)
>>> a.dump()
>>> del a
现在,数据全部在磁盘上,让我们选择我们要加载到内存中的数据。 b
是内存中的dict,而b.archive
将文件集映射到字典视图中。
>>> b = klepto.archives.dir_archive('memo')
>>> b
dir_archive('memo', {}, cached=True)
>>> b.keys()
[]
>>> b.archive.keys()
['a', 'c', 'b', 'e', 'd', 'g', 'f']
>>> b.load('a')
>>> b
dir_archive('memo', {'a': 0}, cached=True)
>>> b.load('b')
>>> b.load('f')
>>> b.load('g')
>>> b['g'](b['f'](b['a'],b['b']))
1
klepto
还为sql
存档提供了相同的界面。
>>> print klepto.archives.sql_archive.__new__.__doc__
initialize a dictionary with a sql database archive backend
Connect to an existing database, or initialize a new database, at the
selected database url. For example, to use a sqlite database 'foo.db'
in the current directory, database='sqlite:///foo.db'. To use a mysql
database 'foo' on localhost, database='mysql://user:pass@localhost/foo'.
For postgresql, use database='postgresql://user:pass@localhost/foo'.
When connecting to sqlite, the default database is ':memory:'; otherwise,
the default database is 'defaultdb'. If sqlalchemy is not installed,
storable values are limited to strings, integers, floats, and other
basic objects. If sqlalchemy is installed, additional keyword options
can provide database configuration, such as connection pooling.
To use a mysql or postgresql database, sqlalchemy must be installed.
Inputs:
name: url for the sql database [default: (see note above)]
dict: initial dictionary to seed the archive
cached: if True, use an in-memory cache interface to the archive
serialized: if True, pickle table contents; otherwise cast as strings
>>> c = klepto.archives.sql_archive('database')
>>> c.update(b)
>>> c
sql_archive('sqlite:///database', {'a': 0, 'b': 1, 'g': <function <lambda> at 0x10446b1b8>, 'f': <built-in function max>}, cached=True)
>>> c.dump()
现在磁盘上的相同对象也在sql存档中。我们可以将新对象添加到存档中。
>>> b['x'] = 69
>>> c['y'] = 96
>>> b.dump('x')
>>> c.dump('y')
在此处获取klepto
:https://github.com/uqfoundation