如何获取第n个随机“nextInt”值?

时间:2013-01-31 00:00:58

标签: java random

当使用java.util.Random类时,如何获取从调用nextInt()方法获得的值N次,但是以更有效的方式(具体在O(1)中)?

例如,如果我构造一个具有特定种子值的Random对象,并且我想得到第100,000个“nextInt()值”(即,在调用方法nextInt()100,000次之后获得的值)一个快速的方式,我能做到吗?

为简单起见,假设JDK的版本为1.7.06,因为可能需要知道Random类中某些私有字段的确切值。说到这里,我发现以下字段与随机值的计算有关:

private static final long multiplier = 0x5DEECE66DL;
private static final long addend = 0xBL;
private static final long mask = (1L << 48) - 1;

在探索了一些关于随机性之后,我发现使用线性同余生成器获得随机值。执行算法的实际方法是方法next(int):

protected int next(int bits) {
    long oldseed, nextseed;
    AtomicLong seed = this.seed;
    do {
        oldseed = seed.get();
        nextseed = (oldseed * multiplier + addend) & mask;
    } while (!seed.compareAndSet(oldseed, nextseed));
    return (int)(nextseed >>> (48 - bits));
}

算法的相关行是获取下一个种子值的行:

nextseed = (oldseed * multiplier + addend) & mask;

因此,更具体地说,是否有一种方法可以推广这个公式来获得“第n个nextseed”值?我假设在那之后,我可以通过让变量“bits”为32来获取第n个int值(方法nextInt()只调用next(32)并返回结果)。

提前致谢

PS:也许这个问题更适合mathexchange

2 个答案:

答案 0 :(得分:5)

你可以在O(log N)时间内完成。从s(0)开始,如果我们暂时忽略模数(2 48 ),我们可以看到(使用ma作为{{1}的简写<}和multiplier

addend

现在,s(1) = s(0) * m + a s(2) = s(1) * m + a = s(0) * m² + (m + 1) * a s(3) = s(2) * m + a = s(0) * m³ + (m² + m + 1) * a ... s(N) = s(0) * m^N + (m^(N-1) + ... + m + 1) * a 可以通过重复平方的模幂运算在m^N (mod 2^48)步骤中轻松计算。

另一部分有点复杂。暂时忽略模数,几何和是

O(log N)

使计算模(m^N - 1) / (m - 1) 有点不重要的原因是2^48与模数无关。但是,因为

m - 1

m = 0x5DEECE66DL 的最大公约数,模数为4,而m-1具有模(m-1)/4inv模{}。让

2^48

然后

c = (m^N - 1) (mod 4*2^48)

所以

  • compute (c / 4) * inv ≡ (m^N - 1) / (m - 1) (mod 2^48)
  • compute M ≡ m^N (mod 2^50)

获取

inv

答案 1 :(得分:2)

我接受了Daniel Fischer的答案,因为它是正确的并给出了一般解决方案。使用Daniel的答案,这是一个具有java代码的具体示例,它显示了公式的基本实现(我广泛使用了BigInteger类,因此它可能不是最优的,但我确认了实际调用nextInt方法的基本方法的显着加速( )N次):

import java.math.BigInteger;
import java.util.Random;


public class RandomNthNextInt {

    // copied from java.util.Random =========================
    private static final long   multiplier  = 0x5DEECE66DL;
    private static final long   addend      = 0xBL;
    private static final long   mask        = (1L << 48) - 1;


    private static long initialScramble(long seed) {

        return (seed ^ multiplier) & mask;
    }

    private static int getNextInt(long nextSeed) {

        return (int)(nextSeed >>> (48 - 32));
    }
    // ======================================================

    private static final BigInteger mod = BigInteger.valueOf(mask + 1L);
    private static final BigInteger inv = BigInteger.valueOf((multiplier - 1L) / 4L).modInverse(mod);


    /**
     * Returns the value obtained after calling the method {@link Random#nextInt()} {@code n} times from a
     * {@link Random} object initialized with the {@code seed} value.
     * <p>
     * This method does not actually create any {@code Random} instance, instead it applies a direct formula which
     * calculates the expected value in a more efficient way (close to O(log N)).
     * 
     * @param seed
     *            The initial seed value of the supposed {@code Random} object
     * @param n
     *            The index (starting at 1) of the "nextInt() value"
     * @return the nth "nextInt() value" of a {@code Random} object initialized with the given seed value
     * @throws IllegalArgumentException
     *             If {@code n} is not positive
     */
    public static long getNthNextInt(long seed, long n) {

        if (n < 1L) {
            throw new IllegalArgumentException("n must be positive");
        }

        final BigInteger seedZero = BigInteger.valueOf(initialScramble(seed));
        final BigInteger nthSeed = calculateNthSeed(seedZero, n);

        return getNextInt(nthSeed.longValue());
    }

    private static BigInteger calculateNthSeed(BigInteger seed0, long n) {

        final BigInteger largeM = calculateLargeM(n);
        final BigInteger largeMmin1div4 = largeM.subtract(BigInteger.ONE).divide(BigInteger.valueOf(4L));

        return seed0.multiply(largeM).add(largeMmin1div4.multiply(inv).multiply(BigInteger.valueOf(addend))).mod(mod);
    }

    private static BigInteger calculateLargeM(long n) {

        return BigInteger.valueOf(multiplier).modPow(BigInteger.valueOf(n), BigInteger.valueOf(1L << 50));
    }

    // =========================== Testing stuff ======================================

    public static void main(String[] args) {

        final long n = 100000L; // change this to test other values
        final long seed = 1L; // change this to test other values

        System.out.println(n + "th nextInt (formula) = " + getNthNextInt(seed, n));
        System.out.println(n + "th nextInt (slow)    = " + getNthNextIntSlow(seed, n));
    }

    private static int getNthNextIntSlow(long seed, long n) {

        if (n < 1L) {
            throw new IllegalArgumentException("n must be positive");
        }

        final Random rand = new Random(seed);
        for (long eL = 0; eL < (n - 1); eL++) {
            rand.nextInt();
        }
        return rand.nextInt();
    }
}

注意:注意方法initialScramble(long),它用于获取第一个种子值。这是使用特定种子初始化实例时Random类的行为。