将字符向量拆分为数据框中的新行的最快方法

时间:2013-01-29 00:14:16

标签: r split

我不确定如何在搜索时正确说出这一点,很抱歉,如果这有一个简单的答案。

我有58个数据帧,每个约25,000行,我从.csv获得。他们看起来像这样:

Probe.Id     Gene.Id             Score.d
1418126_at   6352                28.52578
145119_a_at  2192                24.87866
1423477_at   NA                  24.43532
1434193_at   100506144///9204    6.22395

理想情况下,我想在“///”处拆分ID并将它们放在新行上。像这样:

Probe.Id     Gene.Id             Score.d
1418126_at   6352                28.52578
145119_a_at  2192                24.87866
1423477_at   NA                  24.43532
1434193_at   100506144           6.22395
1434193_at   9204                6.22395

使用strsplit允许我将Gene.Id作为一个字符向量列表,但是一旦我有了这个,我不确定最有效的方法是使用正确的值获取每个单独的id在他们自己的行上来自其他专栏。理想情况下,我不想只循环25,000行。

如果有人知道正确的方法,我会非常感激。

编辑:我应该补充说,有一个复杂的因素是有些行有这样的ID:

333932///126961///653604///8350///8354///8355///8356///8968///8352///8358///835‌​1///8353///8357" 

我不知道连续的最大数量是多少。

3 个答案:

答案 0 :(得分:6)

编辑: OP评论后的新解决方案。使用data.table非常简单:

df <- structure(list(Probe.Id = c("1418126_at", "145119_a_at", "1423477_at", 
        "1434193_at", "100_at"), Gene.Id = c("6352", "2192", NA, 
        "100506144///9204", "100506144///100506146///100506148///100506150"), 
         Score.d = c(28.52578, 24.87866, 24.43532, 6.22395, 6.22395)), 
        .Names = c("Probe.Id", "Gene.Id", "Score.d"), row.names = c(NA, 5L), 
        class = "data.frame")

require(data.table)
dt <- data.table(df)
dt.out <- dt[, list(Probe.Id = Probe.Id, 
          Gene.Id = unlist(strsplit(Gene.Id, "///")), 
          Score.d = Score.d), by=1:nrow(dt)]

> dt.out

#    nrow    Probe.Id   Gene.Id  Score.d
# 1:    1  1418126_at      6352 28.52578
# 2:    2 145119_a_at      2192 24.87866
# 3:    3  1423477_at        NA 24.43532
# 4:    4  1434193_at 100506144  6.22395
# 5:    4  1434193_at      9204  6.22395
# 6:    5      100_at 100506144  6.22395
# 7:    5      100_at 100506146  6.22395
# 8:    5      100_at 100506148  6.22395
# 9:    5      100_at 100506150  6.22395

如果fixed = TRUE是固定模式,您可以将strsplit添加到///表达式以进一步加快速度。

替代再次使用data.table。考虑到strsplit是一个向量化操作,并且在整个Gene.Id列上运行它会比在每次运行1行时快得多(即使data.table运行很快,你可以通过将前面的代码分成两个步骤来获得更多的加速:

# first split using strsplit (data.table can hold list in its columns!!)
dt[, Gene.Id_split := strsplit(dt$Gene.Id, "///", fixed=TRUE)]
# then just unlist them
dt.2 <- dt[, list(Probe.Id = Probe.Id, 
                  Gene.Id = unlist(Gene.Id_split), 
                  Score.d = Score.d), by = 1:nrow(dt)]

我刚刚复制了此示例中显示的data.table多次,直到我获得了295245行。然后我使用rbenchmark

运行基准测试
# first function
DT1 <- function() {
    dt.1 <- dt[, list(Probe.Id = Probe.Id, 
             Gene.Id = unlist(strsplit(Gene.Id, "///", fixed = TRUE)), 
             Score.d = Score.d), by=1:nrow(dt)]
}

# expected to be faster function
DT2 <- function() {
    dt[, Gene.Id_split := strsplit(dt$Gene.Id, "///", fixed=TRUE)]
    # then just unlist them
    dt.2 <- dt[, list(Probe.Id = Probe.Id, Gene.Id = unlist(Gene.Id_split), Score.d = Score.d), by = 1:nrow(dt)]
}

require(rbenchmark)
benchmark(DT1(), DT2(), replications=10, order="elapsed")

#    test replications elapsed relative user.self sys.self
# 2 DT2()           10  15.708    1.000    14.390    0.391
# 1 DT1()           10  24.957    1.589    23.723    0.436

对于此示例,您的速度提高了1.6倍。但这取决于///的条目数。希望这会有所帮助。

OLD解决方案:(用于连续性)

一种方法是:1)发生此find the positions的{​​{1}},2)///,3)extract,4)duplicate和5) sub他们。

combine

答案 1 :(得分:2)

这是使用strsplitmerge

的解决方案
dat <- read.table(text ='Probe.Id     Gene.Id             Score.d
1418126_at   6352                28.52578
145119_a_at  2192                24.87866
1423477_at   NA                  24.43532
1434193_at   100506144///9204    6.22395',header=T,stringsAsFactors=F)
dat1 <- dat
xx <- do.call(rbind,strsplit(dat$Gene.Id,split='///'))
dat[which(xx[,1]!=xx[,2]),2]  <- xx[which(xx[,1]!=xx[,2]),1]
dat1[which(xx[,1]!=xx[,2]),2]  <- xx[which(xx[,1]!=xx[,2]),2]
  merge(dat,dat1,all.y=T,all.x=T)
     Probe.Id   Gene.Id  Score.d
1  1418126_at      6352 28.52578
2  1423477_at      <NA> 24.43532
3  1434193_at 100506144  6.22395
4  1434193_at      9204  6.22395
5 145119_a_at      2192 24.87866

答案 2 :(得分:2)

这是一个使用data.frame构造函数的方法,使用它默认循环输入向量的“特性”:

do.call(rbind, 
        apply(dat, 1, function(x) 
                         data.frame(Probe.ID=x['Probe.Id'], 
                                    Gene.Id=strsplit(x['Gene.Id'], '///'),
                                    Score.d=x['Score.d'],
                                    row.names=NULL
                                   )
             )
        )
##      Probe.ID   Gene.Id  Score.d
## 1  1418126_at      6352 28.52578
## 2 145119_a_at      2192 24.87866
## 3  1423477_at      <NA> 24.43532
## 4  1434193_at 100506144  6.22395
## 5  1434193_at      9204  6.22395