我已使用此代码计算每个群集中每个用户的不同质量指标的值
>>> for name, group in df.groupby(["Cluster_id", "User"]):
... print 'group name:', name
... print 'group rows:'
... print group
... print 'counts of Quality values:'
... print group["Quality"].value_counts()
... raw_input()
...
但现在我得到的输出为
group rows:
tag user quality cluster
676 black fabric http://steve.nl/user_1002 usefulness-useful 1
708 blond wood http://steve.nl/user_1002 usefulness-useful 1
709 blond wood http://steve.nl/user_1002 problematic-misspelling 1
1410 eames? http://steve.nl/user_1002 usefulness-not_useful 1
1411 eames? http://steve.nl/user_1002 problematic-misperception 1
3649 rocking chair http://steve.nl/user_1002 usefulness-useful 1
3650 rocking chair http://steve.nl/user_1002 problematic-misperception 1
counts of Quality Values:
usefulness-useful 3
problematic-misperception 2
usefulness-not_useful 1
problematic-misspelling 1
我现在要做的是检查条件,即:
if quality==usefulness-useful:
good = good + 1
else:
bad = bad + 1
我尝试写输出:
counts of Quality Values:
usefulness-useful 3
problematic-misperception 2
usefulness-not_useful 1
problematic-misspelling 1
进入变量并尝试逐行遍历变量,但它不起作用。有人可以给我一些关于如何对某些行进行计算的建议。
答案 0 :(得分:3)
一旦有了一个组,就可以使用.iterrows()
方法逐行迭代。它为您提供行索引和行本身:
In [33]: for row_number, row in group.iterrows():
....: print row_number
....: print row
....:
676
Tag black fabric
User http://steve.nl/user_1002
Quality usefulness-useful
Cluster_id 1
Name: 676
708
Tag blond wood
User http://steve.nl/user_1002
Quality usefulness-useful
Cluster_id 1
Name: 708
[etc]
并且每个行都可以像字典一样索引,例如:
In [48]: row
Out[48]:
Tag rocking chair
User http://steve.nl/user_1002
Quality problematic-misperception
Cluster_id 1
Name: 3650
In [49]: row["User"]
Out[49]: 'http://steve.nl/user_1002'
In [50]: row["Tag"]
Out[50]: 'rocking chair'
所以你可以编写你的循环
good = 0
bad = 0
for row_number, row in group.iterrows():
if row['Quality'] == 'usefulness-useful':
good += 1
else:
bad += 1
print 'good', good, 'bad', bad
给出了
good 3 bad 4
如果对你有意义的话,这是一个非常好的方法。另一种方法是直接使用Quality
列中的计数:
In [54]: counts = group["Quality"].value_counts()
In [55]: counts
Out[55]:
usefulness-useful 3
problematic-misperception 2
usefulness-not_useful 1
problematic-misspelling 1
In [56]: counts['usefulness-useful']
Out[56]: 3
因为坏=总计 - 好 - 我们有
In [57]: counts.sum() - counts['usefulness-useful']
Out[57]: 4