我有以下数据框(下面),它是我的完整数据集的子集。我需要为具有相同LAT / LONG和着陆日期的每个条目定义相同的ID。我之前订购的LANDEDDATE从最早到最晚。
> dput(df2)
structure(list(LATITUDE = c(43.35, 43.35, 43.35, 43.35, 43.35,
43.35, 43.35, 43.35, 43.5166, 43.5166, 43.5166, 43.5166, 43.5166,
43.5166, 43.5166, 42.9833, 42.9833, 42.9833, 42.9666, 42.9666
), LONGITUDE = c(-60.6163, -60.6165, -60.7167, -60.7166, -60.7163,
-60.716, -60.7169, -60.7166, -59.9169, -59.9168, -59.9169, -59.9166,
-59.9166, -59.916, -59.916, -61.8333, -61.8333, -61.8333, -61.9161,
-61.9161), LANDEDDATE = structure(c(11171, 11171, 11183, 11183,
11183, 11183, 11183, 11183, 11192, 11192, 11192, 11192, 11192,
11192, 11192, 11210, 11210, 11210, 11210, 11210), class = "Date"),
sppCODE = c(251L, 251L, 251L, 251L, 251L, 251L, 251L, 251L,
251L, 251L, 251L, 251L, 251L, 256L, 251L, 256L, 252L, 251L,
251L, 252L), LIVEW = c(0.337, 0.471, 0.238, 0.772, 0.178,
0.416, 0.535, 0.356, 0.442, 0.663, 0.442, 0.497, 0.276, 0.032,
0.828, 0.035, 0.011, 1.224, 1.025, 0.072), SPECIES = structure(c(7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L), .Label = c("Albacore Tuna", "Bigeye Tuna",
"Bluefin Tuna", "Mako", "Porbeagle", "Shark, UNSP", "Swordfish",
"Tuna, UNSP", "White Marlin", "Yellowfin Tuna"), class = "factor")), .Names = c("LATITUDE",
"LONGITUDE", "LANDEDDATE", "sppCODE", "LIVEW", "SPECIES"), row.names = c(19L,
20L, 13L, 14L, 15L, 16L, 17L, 18L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 1L, 2L, 3L, 4L, 5L), class = "data.frame")
这是我到目前为止所做的,但我无法弄清楚其余部分。
df2$setID<-"NA" #I created an empty setID.
> head(df2)
LATITUDE LONGITUDE LANDEDDATE sppCODE LIVEW SPECIES setID
19 43.35 -60.6163 2000-08-02 251 0.337 Swordfish NA
20 43.35 -60.6165 2000-08-02 251 0.471 Swordfish NA
13 43.35 -60.7167 2000-08-14 251 0.238 Swordfish NA
14 43.35 -60.7166 2000-08-14 251 0.772 Swordfish NA
15 43.35 -60.7163 2000-08-14 251 0.178 Swordfish NA
16 43.35 -60.7160 2000-08-14 251 0.416 Swordfish NA
unique<-df2[which(!duplicated(df2[,1:3])),] #This is each entry that are NOT duplicate
unique2$setID<-1:13 # Ranked from 1:13
> head(unique) #looks like that
LATITUDE LONGITUDE LANDEDDATE sppCODE LIVEW SPECIES setID
19 43.35 -60.6163 2000-08-02 251 0.337 Swordfish 1
20 43.35 -60.6165 2000-08-02 251 0.471 Swordfish 2
13 43.35 -60.7167 2000-08-14 251 0.238 Swordfish 3
14 43.35 -60.7166 2000-08-14 251 0.772 Swordfish 4
15 43.35 -60.7163 2000-08-14 251 0.178 Swordfish 5
16 43.35 -60.7160 2000-08-14 251 0.416 Swordfish 6
rep<-df2[which(duplicated(df2[,1:3])),] #This is all my replicates
我需要将我的唯一数据帧的setID分配给rep数据帧中的相应集合(具有相同LAT / LONG和LANDEDDATE的复制)。任何建议将不胜感激!
答案 0 :(得分:7)
您可以使用interaction
within(df2, {id = interaction(LATITUDE,LONGITUDE,LANDEDDATE)})
LATITUDE LONGITUDE LANDEDDATE sppCODE LIVEW SPECIES id
19 43.35 -60.6163 2000-08-02 251 0.337 Swordfish 43.35.-60.6163.2000-08-02
20 43.35 -60.6165 2000-08-02 251 0.471 Swordfish 43.35.-60.6165.2000-08-02
13 43.35 -60.7167 2000-08-14 251 0.238 Swordfish 43.35.-60.7167.2000-08-14
14 43.35 -60.7166 2000-08-14 251 0.772 Swordfish 43.35.-60.7166.2000-08-14
15 43.35 -60.7163 2000-08-14 251 0.178 Swordfish 43.35.-60.7163.2000-08-14
.......
编辑添加drop = TRUE选项(效率更高)(@ Matthew评论),并更改分隔符(更智能)
res1 <- within(df2, {id = interaction(
sprintf("%5.2f", LATITUDE),
sprintf("%5.2f", LONGITUDE),
LANDEDDATE,drop=TRUE,sep=':')})
res1
LATITUDE LONGITUDE LANDEDDATE sppCODE LIVEW SPECIES id
19 43.3500 -60.6163 2000-08-02 251 0.337 Swordfish 43.35:-60.62:2000-08-02
20 43.3500 -60.6165 2000-08-02 251 0.471 Swordfish 43.35:-60.62:2000-08-02
13 43.3500 -60.7167 2000-08-14 251 0.238 Swordfish 43.35:-60.72:2000-08-14
14 43.3500 -60.7166 2000-08-14 251 0.772 Swordfish 43.35:-60.72:2000-08-14
15 43.3500 -60.7163 2000-08-14 251 0.178 Swordfish 43.35:-60.72:2000-08-14
16 43.3500 -60.7160 2000-08-14 251 0.416 Swordfish 43.35:-60.72:2000-08-14
17 43.3500 -60.7169 2000-08-14 251 0.535 Swordfish 43.35:-60.72:2000-08-14
18 43.3500 -60.7166 2000-08-14 251 0.356 Swordfish 43.35:-60.72:2000-08-14
6 43.5166 -59.9169 2000-08-23 251 0.442 Swordfish 43.52:-59.92:2000-08-23
7 43.5166 -59.9168 2000-08-23 251 0.663 Swordfish 43.52:-59.92:2000-08-23
答案 1 :(得分:6)
这听起来像很多争吵!
为什么不使用paste
paste(df2$LONGITUDE, df2$LATITUDE, df2$LANDEDDATE)
然后您可以使用factor
并将其强制转换回其基础整数:
df2$setID <- as.integer(factor(paste(df2$LONGITUDE, df2$LATITUDE, df2$LANDEDDATE)))
如果您的数据很大(或者即使不是!),您也可以使用data.table
执行此操作。
library(data.table)
df2 <- data.table(df2, key=c('LATITUDE', 'LONGITUDE', 'LANDEDDATE'))
df2[, setID := (.GRP), by=c('LATITUDE', 'LONGITUDE', 'LANDEDDATE')]
答案 2 :(得分:2)
id
中的plyr
功能旨在尽可能高效地执行此操作:
library(plyr)
id(df2[c("LATITUDE", "LONGITUDE", "LANDEDDATE")])
id(df2[c("LATITUDE", "LONGITUDE", "LANDEDDATE")], drop = TRUE)
如果您按照该变量对数据框进行排序,则它具有该属性,如果您按纬度,日志和日期对其进行排序,则该变量将按相同顺序排列。
这是一个小基准,并不是说除非您的实际数据远大于此值,否则它可能会有很大差异:
library(microbenchmark)
df3 <- df2[c("LATITUDE", "LONGITUDE", "LANDEDDATE")]
microbenchmark(
id(df3),
id(df3, drop = TRUE),
interaction(df3),
interaction(df3, drop = TRUE))
# Unit: microseconds
# expr min lq median uq max neval
# id(df3) 366 386 397 412 575 100
# id(df3, drop = TRUE) 421 443 460 476 1823 100
# interaction(df3) 622 657 672 698 987 100
# interaction(df3, drop = TRUE) 1006 1053 1079 1108 2210 100