我试图比较两个图像并使用Hu时刻来比较从这些图像中提取的轮廓:https://docs.google.com/file/d/0ByS6Z5WRz-h2WHEzNnJucDlRR2s/edit和https://docs.google.com/file/d/0ByS6Z5WRz-h2VnZyVWRRWEFva0k/edit 第二个图像等于第一个图像只旋转,我预期结果相同的Humoments。 他们有点不同。
幽默标志在右边(第一张图片):
[[ 6.82589151e-01]
[ 2.06816713e-01]
[ 1.09088295e-01]
[ 5.30020870e-03]
[ -5.85888607e-05]
[ -6.85171823e-04]
[ -1.13181280e-04]]
幽默标志在右边(第二张图片):
[[ 6.71793060e-01]
[ 1.97521128e-01]
[ 9.15619847e-02]
[ 9.60179567e-03]
[ -2.44655863e-04]
[ -2.68791106e-03]
[ -1.45592441e-04]]
在此视频中:http://www.youtube.com/watch?v=O-hCEXi3ymU 在第4分钟,我看到他获得了完全一样的。哪里错了?
这是我的代码:
nomeimg = "Sassatelli 1984 ruotato.jpg"
#nomeimg = "Sassatelli 1984 n. 165 mod1.jpg"
img = cv2.imread(nomeimg)
gray = cv2.imread(nomeimg,0)
ret,thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY_INV)
element = cv2.getStructuringElement(cv2.MORPH_CROSS,(4,4))
imgbnbin = thresh
imgbnbin = cv2.dilate(imgbnbin, element)
#find contour
contours,hierarchy=cv2.findContours(imgbnbin,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
#Elimination small contours
Areacontours = list()
area = cv2.contourArea(contours[i])
if (area > 90 ):
Areacontours.append(contours[i])
contours = Areacontours
print('found objects')
print(len(contours))
#contorus[3] for sing in first image
#contours[0] for sign in second image
print("humoments")
mom = cv2.moments(contours[0])
Humoments = cv2.HuMoments(mom)
print(Humoments)
答案 0 :(得分:15)
我认为你的数字可能还可以,它们之间的差异适中。正如那个人在你连接的视频中说的那样(大约3分钟):
为了获得一些有意义的答案,我们采取了对数转换
因此,如果我们对您在上面发布的数据进行-np.sign(a)*np.log10(np.abs(a))
,我们会得到:
第一张图片:
[[ 0.16584062]
[ 0.68441437]
[ 0.96222185]
[ 2.27570703]
[-4.23218495]
[-3.16420051]
[-3.9462254 ]]
第二张图片:
[[ 0.17276449]
[ 0.70438644]
[ 1.0382848 ]
[ 2.01764754]
[-3.61144437]
[-2.57058511]
[-3.83686117]]
预计它们不相同的事实。您开始使用栅格化图像,然后处理相当多的图像以获得传递的轮廓。
来自opencv docs:
对于光栅图像,原始图像和变换图像的计算Hu不变量略有不同。