我想用行均值替换数据中的缺失值或字符值。例如,在下面的数据中,缺失值用“U”表示,我想用p1到p6中的所有“U”替换每行的“ave”列中的值。有数千行要替换。
num p1 p2 p3 p4 p5 p6 ave
L1 0 10 1 U 0 -10 1.3
L2 10 1 10 10 U 10 7.1
L3 U 10 10 U 1 -10 3.1
答案 0 :(得分:1)
数据:
df<-read.table(text="num p1 p2 p3 p4 p5 p6 ave
L1 0 10 1 U 0 -10 1.3
L2 10 1 10 10 U 10 7.1
L3 U 10 10 U 1 -10 3.1 ", header = TRUE)
您可以使用apply
替换U
s:
as.data.frame(t(apply(df, 1, function(x) replace(x, x == "U", tail(x, 1)))))
num p1 p2 p3 p4 p5 p6 ave
1 L1 0 10 1 1.3 0 -10 1.3
2 L2 10 1 10 10 7.1 10 7.1
3 L3 3.1 10 10 3.1 1 -10 3.1
答案 1 :(得分:0)
# example data table
mtcars
# here's how to access all the columns below two in the first row
mtcars[ 1 , mtcars[ 1 , ] < 2 ]
# here's how to take the mean of all columns at or above two in the first row
rowMeans( mtcars[ 1 , mtcars[ 1 , ] >= 2 ] , na.rm = T )
# here's how to overwrite the values below two with the mean of all columns at or above two
mtcars[ 1 , mtcars[ 1 , ] < 2 ] <- rowMeans( mtcars[ 1 , mtcars[ 1 , ] >= 2 ] , na.rm = T )
# run this command for every row, and you're done
for ( i in seq( nrow( mtcars ) ) ){
mtcars[ i , mtcars[ i , ] < 2 ] <-
rowMeans( mtcars[ i , mtcars[ i , ] >= 2 ] , na.rm = T )
}
答案 2 :(得分:0)
这是一种方法:
mydf <- read.table(
header = TRUE, stringsAsFactors = FALSE,
text = "num p1 p2 p3 p4 p5 p6 ave
L1 0 10 1 U 0 -10 1.3
L2 10 1 10 10 U 10 7.1
L3 U 10 10 U 1 -10 3.1")
cbind(mydf[1],
t(apply(mydf[-1], 1,
function(x) ifelse(x == "U", x["ave"], x))))
# num p1 p2 p3 p4 p5 p6 ave
# 1 L1 0 10 1 1.3 0 -10 1.3
# 2 L2 10 1 10 10 7.1 10 7.1
# 3 L3 3.1 10 10 3.1 1 -10 3.1