我正在研究着名的Gonzales "Digital Image Processing"上的图像处理,并谈论图像恢复,很多例子都是用计算机生成的噪声(高斯,盐和胡椒等)完成的。在MATLAB中有一些内置函数可以做到这一点。那么OpenCV呢?
答案 0 :(得分:29)
据我所知,Matlab中没有方便的内置函数。但只需几行代码就可以自己创建这些图像。
例如加性高斯噪声:
Mat gaussian_noise = img.clone();
randn(gaussian_noise,128,30);
盐和胡椒噪音:
Mat saltpepper_noise = Mat::zeros(img.rows, img.cols,CV_8U);
randu(saltpepper_noise,0,255);
Mat black = saltpepper_noise < 30;
Mat white = saltpepper_noise > 225;
Mat saltpepper_img = img.clone();
saltpepper_img.setTo(255,white);
saltpepper_img.setTo(0,black);
答案 1 :(得分:11)
将高斯,椒盐斑点和泊松噪声添加到图像的简单函数
Parameters
----------
image : ndarray
Input image data. Will be converted to float.
mode : str
One of the following strings, selecting the type of noise to add:
'gauss' Gaussian-distributed additive noise.
'poisson' Poisson-distributed noise generated from the data.
's&p' Replaces random pixels with 0 or 1.
'speckle' Multiplicative noise using out = image + n*image,where
n,is uniform noise with specified mean & variance.
import numpy as np
import os
import cv2
def noisy(noise_typ,image):
if noise_typ == "gauss":
row,col,ch= image.shape
mean = 0
#var = 0.1
#sigma = var**0.5
gauss = np.random.normal(mean,1,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy
elif noise_typ == "s&p":
row,col,ch = image.shape
s_vs_p = 0.5
amount = 0.004
out = image
# Salt mode
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt))
for i in image.shape]
out[coords] = 1
# Pepper mode
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper))
for i in image.shape]
out[coords] = 0
return out
elif noise_typ == "poisson":
vals = len(np.unique(image))
vals = 2 ** np.ceil(np.log2(vals))
noisy = np.random.poisson(image * vals) / float(vals)
return noisy
elif noise_typ =="speckle":
row,col,ch = image.shape
gauss = np.random.randn(row,col,ch)
gauss = gauss.reshape(row,col,ch)
noisy = image + image * gauss
return noisy
答案 2 :(得分:5)
“Salt&amp; Pepper”噪音可以使用NumPy矩阵操作以非常简单的方式添加。
def add_salt_and_pepper(gb, prob):
'''Adds "Salt & Pepper" noise to an image.
gb: should be one-channel image with pixels in [0, 1] range
prob: probability (threshold) that controls level of noise'''
rnd = np.random.rand(gb.shape[0], gb.shape[1])
noisy = gb.copy()
noisy[rnd < prob] = 0
noisy[rnd > 1 - prob] = 1
return noisy
答案 3 :(得分:4)
scikit-image包中包含函数random_noise()
。它具有多种内置噪声模式,例如{if}
,gaussian
(用于盐和胡椒噪声),s&p
和possion
。
下面,我展示了如何使用此方法的示例
speckle
还有一个名为imgaug的软件包,专用于以各种方式增强图像。它提供高斯,泊桑和盐和胡椒粉噪声增强剂。这是使用它为图像添加噪点的方法:
from PIL import Image
import numpy as np
from skimage.util import random_noise
im = Image.open("test.jpg")
# convert PIL Image to ndarray
im_arr = np.asarray(im)
# random_noise() method will convert image in [0, 255] to [0, 1.0],
# inherently it use np.random.normal() to create normal distribution
# and adds the generated noised back to image
noise_img = random_noise(im_arr, mode='gaussian', var=0.05**2)
noise_img = (255*noise_img).astype(np.uint8)
img = Image.fromarray(noise_img)
img.show()
答案 4 :(得分:2)
# Adding noise to the image
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
img = cv2.imread('./fruit.png',0)
im = np.zeros(img.shape, np.uint8) # do not use original image it overwrites the image
mean = 0
sigma = 10
cv2.randn(im,mean,sigma) # create the random distribution
Fruit_Noise = cv2.add(img, im) # add the noise to the original image
plt.imshow(Fruit_Noise, cmap='gray')
可以改变均值和西格玛的值,以产生噪声的特定变化,如高斯噪声或胡椒盐噪声等。 您可以根据需要使用randn或randu。请查看文档:{{3}}
答案 5 :(得分:0)
#Adding noise
[m,n]=img.shape
saltpepper_noise=zeros((m, n));
saltpepper_noise=rand(m,n); #creates a uniform random variable from 0 to 1
for i in range(0,m):
for j in range(0,n):
if saltpepper_noise[i,j]<=0.5:
saltpepper_noise[i,j]=0
else:
saltpepper_noise[i,j]=255
答案 6 :(得分:0)
虽然没有像matlab那样的内置函数 &#34; imnoise(图像,noiseType,NoiseLevel)&#34;但我们可以随意轻松添加所需的金额 有价值的脉冲噪音或盐和胡椒手动进入图像。 1.增加随机值脉冲噪声。
import random as r
def addRvinGray(image,n): # add random valued impulse noise in grayscale
'''parameters:
image: type=numpy array. input image in which you want add noise.
n: noise level (in percentage)'''
k=0 # counter variable
ih=image.shape[0]
iw=image.shape[1]
noisypixels=(ih*iw*n)/100 # here we calculate the number of pixels to be altered.
for i in range(ih*iw):
if k<noisypixels:
image[r.randrange(0,ih)][r.randrange(0,iw)]=r.randrange(0,256) #access random pixel in the image gives random intensity (0-255)
k+=1
else:
break
return image
- 添加盐和胡椒的噪音
醇>
def addSaltGray(image,n): #add salt-&-pepper noise in grayscale image
k=0
salt=True
ih=image.shape[0]
iw=image.shape[1]
noisypixels=(ih*iw*n)/100
for i in range(ih*iw):
if k<noisypixels: #keep track of noise level
if salt==True:
image[r.randrange(0,ih)][r.randrange(0,iw)]=255
salt=False
else:
image[r.randrange(0,ih)][r.randrange(0,iw)]=0
salt=True
k+=1
else:
break
return image
&#39;&#39;&#39;注意:对于彩色图像:首先将图像分割为三个或四个通道 取决于使用opencv函数的输入图像: (B,G,R)= cv2.split(图像)
(B,G,R,A)= cv2.split(图像)
分割后在所有通道上执行相同的操作。 最后合并所有渠道: merged = cv2.merge([B,G,R]) 返回合并&#39;&#39;&#39;&#39; 我希望这会对某人有所帮助。
答案 7 :(得分:0)
http://scikit-image.org/docs/dev/api/skimage.util.html#skimage.util.random_noise
skimage.util.random_noise(image, mode='gaussian', seed=None, clip=True, **kwargs)
答案 8 :(得分:0)
我对@Shubham Pachori的代码做了一些更改。当将图像读取为numpy阵列时,默认的dtype为uint8,当在图像上添加噪点时可能会导致换行。
import numpy as np
from PIL import Image
"""
image: read through PIL.Image.open('path')
sigma: variance of gaussian noise
factor: the bigger this value is, the more noisy is the poisson_noised image
##IMPORTANT: when reading a image into numpy arrary, the default dtype is uint8,
which can cause wrapping when adding noise onto the image.
E.g, example = np.array([128,240,255], dtype='uint8')
example + 50 = np.array([178,44,49], dtype='uint8')
Transfer np.array to dtype='int16' can solve this problem.
"""
def gaussian_noise(image, sigma):
img = np.array(image)
noise = np.random.randn(img.shape[0], img.shape[1], img.shape[2])
img = img.astype('int16')
img_noise = img + noise * sigma
img_noise = np.clip(img_noise, 0, 255)
img_noise = img_noise.astype('uint8')
return Image.fromarray(img_noise)
def poisson_noise(image, factor):
factor = 1 / factor
img = np.array(image)
img = img.astype('int16')
img_noise = np.random.poisson(img * factor) / float(factor)
np.clip(img_noise, 0, 255, img_noise)
img_noise = img_noise.astype('uint8')
return Image.fromarray(img_noise)