因此,我正在尝试生成一种算法,该算法将找到n项的最佳组合(在我的情况下为4),这些项目只能在背包中放置一次(0-1)并具有最大重量容量。可能更有效地概括,我想在我的背包中放置不超过四个独特的物品,以便它们的重量小于某个值W,同时最大化它们的总价值。我的第一次尝试和假设是将体积限制为4,所有项目体积为1,用于多维背包问题。但是我遇到了它不是0-1的问题(意思是否在袋子里)。然后我尝试制作一个多维的0-1(有界)背包代码,但我无法添加音量限制以及0-1要求。如何编写0-1多维背包问题?或者我如何调整代码只保留一个V卷,所有项目卷为1?代码不一定是Java,但这就是我到目前为止所做的。
背包:
package hu.pj.alg;
import hu.pj.obj.Item;
import java.util.*;
public class ZeroOneKnapsack {
protected List<Item> itemList = new ArrayList<Item>();
protected int maxWeight = 0;
protected int solutionWeight = 0;
protected int profit = 0;
protected boolean calculated = false;
public ZeroOneKnapsack() {}
public ZeroOneKnapsack(int _maxWeight) {
setMaxWeight(_maxWeight);
}
public ZeroOneKnapsack(List<Item> _itemList) {
setItemList(_itemList);
}
public ZeroOneKnapsack(List<Item> _itemList, int _maxWeight) {
setItemList(_itemList);
setMaxWeight(_maxWeight);
}
// calculte the solution of 0-1 knapsack problem with dynamic method:
public List<Item> calcSolution() {
int n = itemList.size();
setInitialStateForCalculation();
if (n > 0 && maxWeight > 0) {
List< List<Integer> > c = new ArrayList< List<Integer> >();
List<Integer> curr = new ArrayList<Integer>();
c.add(curr);
for (int j = 0; j <= maxWeight; j++)
curr.add(0);
for (int i = 1; i <= n; i++) {
List<Integer> prev = curr;
c.add(curr = new ArrayList<Integer>());
for (int j = 0; j <= maxWeight; j++) {
if (j > 0) {
int wH = itemList.get(i-1).getWeight();
curr.add(
(wH > j)
?
prev.get(j)
:
Math.max(
prev.get(j),
itemList.get(i-1).getValue() + prev.get(j-wH)
)
);
} else {
curr.add(0);
}
} // for (j...)
} // for (i...)
profit = curr.get(maxWeight);
for (int i = n, j = maxWeight; i > 0 && j >= 0; i--) {
int tempI = c.get(i).get(j);
int tempI_1 = c.get(i-1).get(j);
if (
(i == 0 && tempI > 0)
||
(i > 0 && tempI != tempI_1)
)
{
Item iH = itemList.get(i-1);
int wH = iH.getWeight();
iH.setInKnapsack(1);
j -= wH;
solutionWeight += wH;
}
} // for()
calculated = true;
} // if()
return itemList;
}
// add an item to the item list
public void add(String name, int weight, int value) {
if (name.equals(""))
name = "" + (itemList.size() + 1);
itemList.add(new Item(name, weight, value));
setInitialStateForCalculation();
}
// add an item to the item list
public void add(int weight, int value) {
add("", weight, value); // the name will be "itemList.size() + 1"!
}
// remove an item from the item list
public void remove(String name) {
for (Iterator<Item> it = itemList.iterator(); it.hasNext(); ) {
if (name.equals(it.next().getName())) {
it.remove();
}
}
setInitialStateForCalculation();
}
// remove all items from the item list
public void removeAllItems() {
itemList.clear();
setInitialStateForCalculation();
}
public int getProfit() {
if (!calculated)
calcSolution();
return profit;
}
public int getSolutionWeight() {return solutionWeight;}
public boolean isCalculated() {return calculated;}
public int getMaxWeight() {return maxWeight;}
public void setMaxWeight(int _maxWeight) {
maxWeight = Math.max(_maxWeight, 0);
}
public void setItemList(List<Item> _itemList) {
if (_itemList != null) {
itemList = _itemList;
for (Item item : _itemList) {
item.checkMembers();
}
}
}
// set the member with name "inKnapsack" by all items:
private void setInKnapsackByAll(int inKnapsack) {
for (Item item : itemList)
if (inKnapsack > 0)
item.setInKnapsack(1);
else
item.setInKnapsack(0);
}
// set the data members of class in the state of starting the calculation:
protected void setInitialStateForCalculation() {
setInKnapsackByAll(0);
calculated = false;
profit = 0;
solutionWeight = 0;
}
} // class
项目:
package hu.pj.obj;
public class Item {
protected String name = "";
protected int weight = 0;
protected int value = 0;
protected int bounding = 1; // the maximal limit of item's pieces
protected int inKnapsack = 0; // the pieces of item in solution
public Item() {}
public Item(Item item) {
setName(item.name);
setWeight(item.weight);
setValue(item.value);
setBounding(item.bounding);
}
public Item(int _weight, int _value) {
setWeight(_weight);
setValue(_value);
}
public Item(int _weight, int _value, int _bounding) {
setWeight(_weight);
setValue(_value);
setBounding(_bounding);
}
public Item(String _name, int _weight, int _value) {
setName(_name);
setWeight(_weight);
setValue(_value);
}
public Item(String _name, int _weight, int _value, int _bounding) {
setName(_name);
setWeight(_weight);
setValue(_value);
setBounding(_bounding);
}
public void setName(String _name) {name = _name;}
public void setWeight(int _weight) {weight = Math.max(_weight, 0);}
public void setValue(int _value) {value = Math.max(_value, 0);}
public void setInKnapsack(int _inKnapsack) {
inKnapsack = Math.min(getBounding(), Math.max(_inKnapsack, 0));
}
public void setBounding(int _bounding) {
bounding = Math.max(_bounding, 0);
if (bounding == 0)
inKnapsack = 0;
}
public void checkMembers() {
setWeight(weight);
setValue(value);
setBounding(bounding);
setInKnapsack(inKnapsack);
}
public String getName() {return name;}
public int getWeight() {return weight;}
public int getValue() {return value;}
public int getInKnapsack() {return inKnapsack;}
public int getBounding() {return bounding;}
} // class
答案 0 :(得分:6)
这是一个通用实现,用于解决具有2个维度(大小和体积)的背包0-1问题。我使用矩阵而不是列表列表,因为它更容易。这是整个类,也是测试它的主要方法。
要添加尺寸,只需在矩阵中添加新尺寸并添加内部循环以检查所有条件。
public class MultidimensionalKnapsack {
/** The size of the knapsack */
private static int size;
/** The volume of the knapsack */
private static int vol;
private static class Item {
public int value;
public int size;
public int volume;
public Item(int v, int w, int vol) {
value = v;
size = w;
volume = vol;
}
}
// Knapsack 0/1 without repetition
// Row: problem having only the first i items
// Col: problem having a knapsack of size j
// Third dimension: problem having a knapsack of volume h
private static int[][][] dynNoRep;
private static void noRep(Item[] items) {
dynNoRep = new int[items.length + 1][size + 1][vol + 1];
for(int j = 0; j <= size; j++) {
dynNoRep[0][j][0] = 0;
}
for(int i = 0; i <= vol; i++) {
dynNoRep[0][0][i] = 0;
}
for(int i = 0; i <= items.length; i++) {
dynNoRep[i][0][0] = 0;
}
for(int i = 1; i <= items.length; i++)
for(int j = 0; j <= size; j++) {
for(int h = 0; h <= vol; h++) {
if(items[i - 1].size > j)
// If the item i is too big, I can't put it and the solution is the same of the problem with i - 1 items
dynNoRep[i][j][h] = dynNoRep[i - 1][j][h];
else {
if(items[i - 1].volume > h)
// If the item i is too voluminous, I can't put it and the solution is the same of the problem with i - 1 items
dynNoRep[i][j][h] = dynNoRep[i - 1][j][h];
else {
// The item i could be useless and the solution is the same of the problem with i - 1 items, or it could be
// useful and the solution is "(solution of knapsack of size j - item[i].size and volume h - item[i].volume) + item[i].value"
dynNoRep[i][j][h] = Math.max(dynNoRep[i - 1][j][h], dynNoRep[i - 1][j - items[i - 1].size][h - items[i - 1].volume] + items[i - 1].value);
}
}
}
}
}
public static void main(String[] args) {
size = 15;
vol = 12;
Item[] items = {new Item(2, 4, 1), new Item(1, 5, 4), new Item(6, 3, 9),
new Item(3, 3, 19), new Item(7, 2, 7), new Item(1, 2, 6), new Item(2, 1, 2),
new Item(10, 9, 12), new Item(9, 10, 2), new Item(24, 23, 11)};
System.out.print("We have the following " + items.length + " items (value, size, volume): ");
for(int i = 0; i < items.length; i++)
System.out.print("(" + items[i].value + ", " + items[i].size + ", " + items[i].volume + ") ");
System.out.println();
System.out.println("And a knapsack of size " + size + " and volume " + vol);
noRep(items);
System.out.println();
// Print the solution
int j = size, h = vol, finalSize = 0, finalValue = 0, finalVolume = 0;
System.out.print("Items picked (value, size, volume) for 0/1 problems without repetitions: ");
for(int i = items.length; i > 0; i--) {
if(dynNoRep[i][j][h] != dynNoRep[i - 1][j][h]) {
System.out.print("(" + items[i - 1].value + ", " + items[i - 1].size + ", " + items[i - 1].volume + ") ");
finalSize += items[i - 1].size;
finalValue += items[i - 1].value;
finalVolume += items[i - 1].volume;
j -= items[i - 1].size;
h -= items[i - 1].volume;
}
}
System.out.println();
System.out.println(" Final size: " + finalSize);
System.out.println(" Final volume: " + finalVolume);
System.out.println(" Final value: " + finalValue);
}
}