我的数据框如下:
Category Name Value
我如何为每个类别选择5个随机名称?使用sample
使用所有行作为可能的候选者返回随机行。但是,我想指定每个类别的随机行数。有什么建议吗?
更新:我愿意使用ddply
答案 0 :(得分:7)
缺少测试用例时的最佳猜测:
do.call( rbind, lapply( split(dfrm, df$cat) ,
function(df) df[sample(nrow(df), 5) , ] )
)
使用Jonathan的数据进行测试:
> do.call( rbind, lapply( split(df, df$Category) ,
+ function(df) df[sample(nrow(df), 5) , ] )
+ )
Category Name Value
1.8 1 8 -0.2496109 # useful side-effect of labeling source group
1.15 1 15 -0.4037368
1.17 1 17 -0.4223724
1.12 1 12 -0.9359026
1.18 1 18 0.3741184
2.37 2 37 0.3033610
2.34 2 34 -0.4517738
2.36 2 36 -0.7695923
snipped remainder
答案 1 :(得分:4)
如果您想从每个类别中获得相同数量的项目,这很容易:
df[unlist(tapply(1:nrow(df),df$Category,function(x) sample(x,3))),]
例如,我按如下方式生成df
:
df <- data.frame(Category=rep(1:5,each=20),Name=1:100,Value=rnorm(100))
然后我从我的代码中得到了以下内容:
> df[unlist(tapply(1:nrow(df),df$Category,function(x) sample(x,3))),]
Category Name Value
5 1 5 0.25151044
20 1 20 1.52486482
18 1 18 0.69313462
30 2 30 0.73444185
27 2 27 0.24000427
39 2 39 -0.10108203
46 3 46 -0.37200574
49 3 49 -1.84920469
43 3 43 0.35976388
68 4 68 0.57879516
76 4 76 -0.11049302
64 4 64 -0.13471303
100 5 100 0.95979408
95 5 95 -0.01928741
99 5 99 0.85725242
如果你想从每个类别中获得不同数量的行,那将会更复杂。
答案 2 :(得分:3)
在过去,我使用了一些我为"sampling" package中的一些函数编写的包装器。
这里的功能是:
strata.sampling <- function(data, group, size, method = NULL) {
# USE:
# * Specify a data.frame and grouping variable.
# * Decide on your sample size. For a sample proportional to the
# population, enter "size" as a decimal. For an equal number of
# samples from each group, enter "size" as a whole number. For
# a specific number of samples from each group, enter the numbers
# required as a vector.
require(sampling)
if (is.null(method)) method <- "srswor"
if (!method %in% c("srswor", "srswr"))
stop('method must be "srswor" or "srswr"')
temp <- data[order(data[[group]]), ]
ifelse(length(size) > 1,
size <- size,
ifelse(size < 1,
size <- round(table(temp[group]) * size),
size <- rep(size, times=length(table(temp[group])))))
strat = strata(temp, stratanames = names(temp[group]),
size = size, method = method)
getdata(temp, strat)
}
以下是如何使用它:
# Sample data --- Note each category has a different number of observations
df <- data.frame(Category = rep(1:5, times = c(40, 15, 7, 13, 25)),
Name = 1:100, Value = rnorm(100))
# Sample 5 from each "Category" group
strata.sampling(df, "Category", 5)
# Sample 2 from the first category, 3 from the next, and so on
strata.sampling(df, "Category", c(2, 3, 4, 5, 2))
# Sample 15% from each group
strata.sampling(df, "Category", .15)
我还编写了here增强功能。该函数可以优雅地处理组可能具有比指定数量的样本更少的观察值的情况,并且还允许您按多个变量进行分层。有关几个示例,请参阅the docs。