我尝试对完全由字符串组成的CSV数据进行某些类型转换。我以为我会使用标题名称字典来运行函数,并在每个CSV行上映射这些函数。我对如何有效地将多个功能映射到一行感到困惑。我想要枚举标题并为函数创建一个新的索引字典:
header_map = {'Foo':str,
'Bar':str,
'FooBar':float}
csv_data = [('Foo', 'Bar', 'FooBar'),
#lots of data...
]
index_map = {}
#enumerate the rows and create a dictionary of index:function
for i, header in enumerate(csv_data[0]):
index_map[i] = header_map[header]
#retrieve the function for each index and call it on the value
new_csv = [[index_map[i](value) for i, value in enumerate(row)]
for row in csv_data[1:]]
我只是好奇是否有人知道更简单有效的方法来完成这种类型的操作?
答案 0 :(得分:1)
没有测试(没有样本输入),但这似乎做你想要的:
heads = csv_data[0]
new_csv = heads + [
tuple(header_map[head](item) for head, item in zip(heads, row))
for row in csv_data[1:]]
答案 1 :(得分:1)
这是一种方法using_converter
,它稍快一些:
import itertools as IT
header_map = {'Foo':str,
'Bar':str,
'FooBar':float}
N = 20000
csv_data = [('Foo', 'Bar', 'FooBar')] + [('Foo', 'Bar', 1123.451)]*N
def original(csv_data):
index_map = {}
#enumerate the rows and create a dictionary of index:function
for i, header in enumerate(csv_data[0]):
index_map[i] = header_map[header]
#retrieve the appropriate function for each index and call it on the value
new_csv = [[index_map[i](value) for i, value in enumerate(row)]
for row in csv_data[1:]]
return new_csv
def using_converter(csv_data):
converters = IT.cycle([header_map[header] for header in csv_data[0]])
conv = converters.next
new_csv = [[conv()(item) for item in row] for row in csv_data[1:]]
return new_csv
def using_header_map(csv_data):
heads = csv_data[0]
new_csv = [
tuple(header_map[head](item) for head, item in zip(heads, row))
for row in csv_data[1:]]
return new_csv
# print(original(csv_data))
# print(using_converter(csv_data))
# print(using_header_map(csv_data))
使用timeit
进行基准测试:
原始代码:
% python -mtimeit -s'import test' 'test.original(test.csv_data)'
100 loops, best of 3: 17.3 msec per loop
稍快的版本(使用itertools):
% python -mtimeit -s'import test' 'test.using_converter(test.csv_data)'
100 loops, best of 3: 15.5 msec per loop
Lev Levitsky的版本:
% python -mtimeit -s'import test' 'test.using_header_map(test.csv_data)'
10 loops, best of 3: 36.2 msec per loop
答案 2 :(得分:0)
如果你知道标题中的标题顺序,你可以使用函数列表而不是dict,
>>> header = [str, str, float]
>>> csv = [("aaa", "bbb", "3.14")] * 10
>>> map(lambda line: map(lambda f, arg: f(arg), header, line), csv)
[['aaa', 'bbb', 3.14], ['aaa', 'bbb', 3.14], ...