divisor function是自然数的除数之和。
进行一些研究我发现this是一个非常好的方法,如果你想找到给定自然数N的除数函数,所以我试着用Python编写代码:
def divisor_function(n):
"Returns the sum of divisors of n"
checked = [False]*100000
factors = prime_factors(n)
sum_of_divisors = 1 # It's = 1 because it will be the result of a product
for x in factors:
if checked[x]:
continue
else:
count = factors.count(x)
tmp = (x**(count+1)-1)//(x-1)
sum_of_divisors*=tmp
checked[x]=True
return sum_of_divisors
它工作得很好,但我确信它可以改进(例如:我创建一个包含100000
元素的列表,但我没有使用大多数元素。)
您将如何改进/实施它?
P.S。这是prime_factors
:
def prime_factors(n):
"Returns all the prime factors of a positive integer"
factors = []
d = 2
while (n > 1):
while (n%d==0):
factors.append(d)
n /= d
d = d + 1
if (d*d>n):
if (n>1): factors.append(int(n));
break;
return factors
答案 0 :(得分:8)
计算除数之和时,需要 p 1 k < k < sub> 1 p 2 k 2 ... - 也就是说,你需要分解中每个素数的指数。目前,您通过计算素数因子的平面列表来执行此操作,然后调用count
来计算指数。这是浪费时间,因为您可以首先以您需要的格式轻松生成素数分解,如下所示:
def factorization(n):
"""
Generate the prime factorization of n in the form of pairs (p, k)
where the prime p appears k times in the factorization.
>>> list(factorization(1))
[]
>>> list(factorization(24))
[(2, 3), (3, 1)]
>>> list(factorization(1001))
[(7, 1), (11, 1), (13, 1)]
"""
p = 1
while p * p < n:
p += 1
k = 0
while n % p == 0:
k += 1
n //= p
if k:
yield p, k
if n != 1:
yield n, 1
上述代码注释:
我已经转换了这段代码,以便它生成分解,而不是构建一个列表(通过重复调用append
)并返回它。在Python中,这种转换几乎总是一种改进,因为它允许您在生成元素时逐个使用它们,而不必将整个序列存储在内存中。
这是doctests效果良好的功能。
现在计算除数之和非常简单:不需要存储检查因子集或计算每个因子出现的次数。事实上,你可以只用一行:
from operator import mul
def sum_of_divisors(n):
"""
Return the sum of divisors of n.
>>> sum_of_divisors(1)
1
>>> sum_of_divisors(33550336) // 2
33550336
"""
return reduce(mul, ((p**(k+1)-1) // (p-1) for p, k in factorization(n)), 1)
答案 1 :(得分:1)
您只需更改两行:
def divisor_function(n):
"Returns the sum of divisors of n"
checked = {}
factors = prime_factors(n)
sum_of_divisors = 1 # It's = 1 because it will be the result of a product
for x in factors:
if checked.get(x,False):
continue
else:
count = factors.count(x)
tmp = (x**(count+1)-1)//(x-1)
sum_of_divisors*=tmp
checked[x]=True
return sum_of_divisors
答案 2 :(得分:1)
为什么dict
或set
- 或count()
- ,,当prime_factors()
保证按升序返回因子时?您只处理之前的因素。计数只能是迭代的一部分:
def divisor_function(n):
"Returns the sum of divisors of n"
factors = prime_factors(n)
sum_of_divisors = 1
count = 0; prev = 0;
for x in factors:
if x==prev:
count += 1
else:
if prev: sum_of_divisors *= (prev**(count+1)-1)//(prev-1)
count = 1; prev = x;
if prev: sum_of_divisors *= (prev**(count+1)-1)//(prev-1)
return sum_of_divisors
答案 3 :(得分:1)
def sum_divisors(n):
assert n > 0
if n == 1:
return 0
sum = 1
if n % 2 == 0: # if n is even there is a need to go over even numbers
i = 2
while i < sqrt (n):
if n % i == 0:
sum = sum + i + (n//i) # if i|n then n/i is an integer so we want to add it as well
i = i + 1
if type (sqrt (n)) == int: # if sqrt(n)|n we would like to avoid adding it twice
sum = sum + sqrt (n)
else:
i = 3
while i < sqrt (n): # this loop will only go over odd numbers since 2 is not a factor
if n % i == 0:
sum = sum + i + (n//i) # if i|n then n/i is an integer so we want to add it as well
i = i + 2
if type (sqrt (n)) == int: # if sqrt(n)|n we would like to avoid adding it twice
sum = sum + sqrt (n)
return sum
答案 4 :(得分:0)
以下是我在Java数字实用程序(广泛用于Project Euler)中所做的事情:
使用显式指数生成素数因子化(参见Gareth Rees的答案)。
基于它展开各种功能中的素数因子分解。即,使用与素数因子分解相同的算法,但直接计算期望值而不是存储因子和指数。
默认情况下,只测试除数为2和奇数的除数。我有方法firstDivisor(n)
和nextDivisor(n,d)
。
(可选)为绑定下的所有数字预先计算最小除数的表。如果您需要将所有或大多数数字分解到界限之下(通过大约sqrt(limit)
提高速度),这非常有用。我将表格挂钩到firstDivisor(n)
和nextDivisor(n,d)
方法中,因此这不会改变分解算法。