Mysql计算不同行的团队等级

时间:2013-01-14 19:25:48

标签: mysql sql

我正在尝试制作一种小册子纸。为此,我有以下表格:

小组

CREATE TABLE `teams` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `creator_id` int(11) NOT NULL,
  `friend_id` int(11) DEFAULT NULL,
  `team_name` varchar(128) NOT NULL,
  PRIMARY KEY (`id`)
);

team_log

CREATE TABLE IF NOT EXISTS `progress_tracker` (
  `id` int(8) NOT NULL AUTO_INCREMENT,
  `user_id` int(8) NOT NULL,
  `team_id` int(11) NOT NULL,
  `date` date NOT NULL,
  `clues_found` int(11) NOT NULL,
  `clues_to_find` int(11) NOT NULL,
  PRIMARY KEY (`id`)
);
  1. 每个团队由两个用户组成;
  2. 每个用户都会找到可变数量的线索;
  3. clues_found可以增加或减少。不保证最高的数字是最新的;
  4. 我需要根据用户加入后(对于团队中的两个用户)找到的线索数量的平均值来获得团队排名(百分比) - clues_found在最大日期减去clues_found的行上日期最短的记录。

    例如,如果每个表都有以下数据:

    团队表数据

    +--------+------------+------------+---------------+
    |     id | creator_id | friend_id  |   team_name   |
    +--------+------------+------------+---------------+
    |      1 |         25 |         28 |         Test1 |
    |      2 |         31 |          5 |         Test2 |
    +--------+------------+------------+---------------+
    

    team_log表数据

    +--------+---------+---------+------------+-------------+---------------+
    |     id | user_id | team_id |    date    | clues_found | clues_to_find |
    +--------+---------+---------+------------+-------------+---------------+
    |      1 |      25 |       1 | 2013-01-6  |           3 |            24 |
    |      2 |      25 |       1 | 2013-01-8  |           7 |            24 |
    |      3 |      25 |       1 | 2013-01-10 |          10 |            24 |
    |      4 |      28 |       1 | 2013-01-8  |           5 |            30 |
    |      5 |      28 |       1 | 2013-01-14 |          20 |            30 |
    |      6 |      31 |       2 | 2013-01-11 |           6 |            14 |
    |      7 |       5 |       2 | 2013-01-9  |           2 |            20 |
    |      8 |       5 |       2 | 2013-01-10 |          10 |            20 |
    |      9 |       5 |       2 | 2013-01-12 |          14 |            20 |
    +--------+---------+---------+------------+-------------+---------------+
    

    期望的结果

    +-------------+---------------------+
    |     team_id |   team_percentage   |
    +-------------+---------------------+
    |           1 |         39,58333333 |
    |           2 |         30          |
    +-------------+---------------------+
    

    作为参考,这是一个中间表示,可能有助于理解:

    +-------------+---------+---------------------+
    |     user_id | team_id | precentage_per_user |
    +-------------+---------+---------------------+
    |          25 |       1 | 29,16666667         |
    |          28 |       1 | 50                  |
    |          31 |       2 | 0                   |
    |           5 |       2 | 60                  |
    +-------------+---------+---------------------+
    

    到目前为止,我有以下sql:

    SELECT STRAIGHT_JOIN
          tl2.team_id, (tl2.weight - tl1.weight)*100/tl2.clues_to_find
       from 
           ( select
                   team_id,user_id,clues_found
                FROM 
                   `team_log` 
                where 1
    
                group by
                   team_id, user_id
                order by
                   `date` ) base
           join (select team_id, user_id, clues_found, clues_to_find from `team_log` where user_id = base.user_id and team_id = base.team_id group by team_id, user_id order by `date` desc) tl2
    

    但是这会返回一个错误,因为我不允许在第二个查询中使用base.user_id。我也不太确定我正朝着正确的方向前进。

    有人可以帮忙吗?

4 个答案:

答案 0 :(得分:2)

这是另一个产生正确结果的查询:

SELECT calc.team_id, AVG((calc.end_clues - calc.start_clues)/calc.total_clues*100) as team_percentage
FROM
    (SELECT log1.user_id, log1.team_id, log1.clues_found as start_clues, log2.clues_found as end_clues, log2.clues_to_find as total_clues FROM team_log log1
    JOIN
    (SELECT MIN(id) as start_id, MAX(id) as end_id FROM team_log GROUP BY user_id) ids
    ON ids.start_id = log1.id
    JOIN team_log log2 ON ids.end_id = log2.id) calc
GROUP BY team_id
ORDER BY team_id;

And the SQL Fiddle-link...

答案 1 :(得分:1)

SQLFiddle

SELECT `team_id`,
  (SUM(CASE WHEN b.`date` IS NULL THEN 0 ELSE `clues_found` * 100 / `clues_to_find` END) -
  SUM(CASE WHEN c.`date` IS NULL THEN 0 ELSE `clues_found` * 100 / `clues_to_find` END)) / 2
FROM `team_log` a
  LEFT JOIN (
    SELECT `team_id`, `user_id`, MAX(date) AS `date`
    FROM `team_log`
    GROUP BY `team_id`, `user_id`) b
  USING (`team_id`, `user_id`, `date`)
  LEFT JOIN (
    SELECT `team_id`, `user_id`, MIN(date) AS `date`
    FROM `team_log`
    GROUP BY `team_id`, `user_id`) c
  USING (`team_id`, `user_id`, `date`)
  GROUP BY `team_id`

既然你说总有两个团队成员,我就用/2。对于可变规模的团队来说,这会稍微复杂一些。

答案 2 :(得分:1)

请看一下并发表评论:

团队pct:

select z.team_id, avg(z.pct) as teampct
from (
select x.user_id, y.team_id, x.mndate,
y.mxdate, x.mnclues_found,
y.mxclues_found, 
(((y.mxclues_found - x.mnclues_found)*100)
/y.mxclues_tofind) pct
from 
(select user_id, team_id, min(date) mndate, 
min(clues_found) as mnclues_found
from team_log
group by user_id, team_id) x
left join 
(select user_id, team_id, max(date) mxdate, 
max(clues_found) as mxclues_found, 
 max(clues_to_find) as mxclues_tofind
from team_log
group by user_id, team_id) y
on x.user_id = y.user_id and
x.team_id = y.team_id) z
group by z.team_id
;

结果1:

| USER_ID | TEAM_ID |   MNDATE |   MXDATE | MNCLUES_FOUND | MXCLUES_FOUND |     PCT |
-------------------------------------------------------------------------------------
|       5 |       2 | 13-01-09 | 13-01-12 |             2 |            14 |      60 |
|      25 |       1 | 13-01-06 | 13-01-10 |             3 |            10 | 29.1667 |
|      28 |       1 | 13-01-08 | 13-01-14 |             5 |            20 |      50 |
|      31 |       2 | 13-01-11 | 13-01-11 |             6 |             6 |       0 |

结果最终:

| TEAM_ID |  TEAMPCT |
----------------------
|       1 | 39.58335 |
|       2 |       30 |

答案 3 :(得分:1)

这有点难看,但应该有效:

select
   team_id,
   AVG(percentage_per_user) as team_percentage
from (select
  team_id,
  user_id,
  ((select clues_found from progress_tracker as x
      where x.user_id = m.user_id order by x.date desc limit 0, 1)
    - (select clues_found from progress_tracker as y
      where y.user_id = m.user_id order by y.date asc limit 0, 1))
  / MAX(clues_to_find)
  as percentage_per_user
from progress_tracker as m
group by team_id, user_id
) as userScore
group by team_id
order by team_percentage desc;

请注意,内部查询单独运行将产生您的中间人"每个用户"结果。