将聚合行重新整形为新列,分类数据

时间:2013-01-13 18:07:27

标签: r reshape

我正在尝试使用R将行聚合到列。以下是我的数据集示例。

age sex hash                                emotion     color
22  1   b17f9762462b37e7510f0e6d2534530d    Lonely      #006666
22  1   b17f9762462b37e7510f0e6d2534530d    Energetic   #66CC00
22  1   b17f9762462b37e7510f0e6d2534530d    Calm        #FFFFFF
22  1   b17f9762462b37e7510f0e6d2534530d    Angry       #FF0000
24  1   7bb50ca97a9b517239b39440a966d2f6    Calm        #006666
24  1   7bb50ca97a9b517239b39440a966d2f6    Excited     #0033cc
24  1   7bb50ca97a9b517239b39440a966d2f6    Empty/void  #999999
24  1   7bb50ca97a9b517239b39440a966d2f6    No emotion  #FF6600
26  1   209f1ba8ef86e855deccc0aae120825c    Comfortable #330066
21  1   b9e9309c0b1255a7efb2edf9ba66ae46    Energetic   #330099
21  1   b9e9309c0b1255a7efb2edf9ba66ae46    Happy       #330066
26  1   209f1ba8ef86e855deccc0aae120825c    No emotion  #FFCC00
26  1   209f1ba8ef86e855deccc0aae120825c    Calm        #006666
21  1   61debd3dea6d1aacce5c9fc7daec4fe5    Empty/void  #FFFFFF
21  1   b9e9309c0b1255a7efb2edf9ba66ae46    Calm        #006666
26  1   209f1ba8ef86e855deccc0aae120825c    No emotion  #339900
21  1   61debd3dea6d1aacce5c9fc7daec4fe5    Loved       #FF6600
26  1   209f1ba8ef86e855deccc0aae120825c    No emotion  #66CC00

我想要做的是:

age sex hash            #000000 #FF0000 ... #FFFFFF
22  1   8798tkojstwz9ei sad     happy   ... loved
...

一个响应由哈希定义,相关数据是年龄和性别。

我希望每个响应都是1而不是几列。每种颜色都应该有自己的列,相关的情感应该是该列的值。

整个数据集有13种颜色,20种情绪和1000多种反应。数据集看起来与样本完全相同,并存储在mySQL数据库中。

我尝试过重塑,但它不适用于分类数据或我没有使用适当的功能。有任何想法吗?如果需要,它可以包括一些mySQL准备。 Java在这里非常慢,因为我有12k +行R听起来像是正确的事情。

谢谢。

2 个答案:

答案 0 :(得分:2)

使用reshape2

dcast(dat,...~color,value.var='emotion')
  age sex                             hash #0033cc #006666     #330066   #330099   #339900   #66CC00 #999999 #FF0000   #FF6600
1  21   1 61debd3dea6d1aacce5c9fc7daec4fe5    <NA>    <NA>        <NA>      <NA>      <NA>      <NA>    <NA>    <NA>     Loved
2  21   1 b9e9309c0b1255a7efb2edf9ba66ae46    <NA>    Calm       Happy Energetic      <NA>      <NA>    <NA>    <NA>      <NA>
3  22   1 b17f9762462b37e7510f0e6d2534530d    <NA>  Lonely        <NA>      <NA>      <NA> Energetic    <NA>   Angry      <NA>
4  24   1 7bb50ca97a9b517239b39440a966d2f6 Excited    Calm        <NA>      <NA>      <NA>      <NA>   Empty    <NA> Noemotion
5  26   1 209f1ba8ef86e855deccc0aae120825c    <NA>    Calm Comfortable      <NA> Noemotion Noemotion    <NA>    <NA>      <NA>
    #FFCC00 #FFFFFF
1      <NA>   Empty
2      <NA>    <NA>
3      <NA>    Calm
4      <NA>    <NA>
5 Noemotion    <NA>

答案 1 :(得分:1)

如果我理解你的目标,reshape()确实是你正在寻找的功能。假设您的数据集名为mydf,请尝试以下操作:

reshape(mydf, direction = "wide", 
        idvar = c("hash", "age", "sex"), 
        timevar = "color")
#    age sex                             hash emotion.#006666 emotion.#66CC00
# 1   22   1 b17f9762462b37e7510f0e6d2534530d          Lonely       Energetic
# 5   24   1 7bb50ca97a9b517239b39440a966d2f6            Calm            <NA>
# 9   26   1 209f1ba8ef86e855deccc0aae120825c            Calm      No emotion
# 10  21   1 b9e9309c0b1255a7efb2edf9ba66ae46            Calm            <NA>
# 14  21   1 61debd3dea6d1aacce5c9fc7daec4fe5            <NA>            <NA>
# emotion.#FFFFFF emotion.#FF0000 emotion.#0033cc emotion.#999999 emotion.#FF6600
# 1             Calm           Angry            <NA>            <NA>            <NA>
# 5             <NA>            <NA>         Excited      Empty/void      No emotion
# 9             <NA>            <NA>            <NA>            <NA>            <NA>
# 10            <NA>            <NA>            <NA>            <NA>            <NA>
# 14      Empty/void            <NA>            <NA>            <NA>           Loved
# emotion.#330066 emotion.#330099 emotion.#FFCC00 emotion.#339900
# 1             <NA>            <NA>            <NA>            <NA>
# 5             <NA>            <NA>            <NA>            <NA>
# 9      Comfortable            <NA>      No emotion      No emotion
# 10           Happy       Energetic            <NA>            <NA>
# 14            <NA>            <NA>            <NA>            <NA>

如果需要,您可以稍后重命名列。