使用QuickCheck评估随机参数的函数

时间:2013-01-12 15:29:25

标签: haskell quickcheck

我正在尝试使用quickcheck生成给定函数的随机参数(假设其所有类型都具有Arbitrary实例和Show实例)以及对这些参数的函数的评估。我只需要打印参数的值并在之后评估答案。所以我期待一个具有以下类型的函数

randomEvaluate :: Testable a => a -> IO ( [String] -- arguments
                                        , String ) -- Answer after evaluating
                                                   -- IO is just needed to get a new random number generator. If I pass a generator then I think probably I will not need IO here. 

我仍然不确定这里的类型,但我认为Testable a会这样做。 我仍然无法真正得到我需要的东西。我很困惑quickcheck数据类型RoseResult等等。

更新

假设我有一个功能

add :: Int -> Int -> Int
add a b = a+b

然后我假设像

这样的行为
> randomEvaluate add
(["1","3"],"4")

其中1和3是为Int生成的随机值,4是f 1 3

2 个答案:

答案 0 :(得分:9)

除了模块Test.QuickCheck.ArbitraryTest.QuickCheck.Gen之外,我认为您不能使用大部分QuickCheck代码。

仅一个参数

以下是一些简单的代码,仅提供一个参数所需的函数:

import Test.QuickCheck.Arbitrary
import Test.QuickCheck.Gen
import System.Random

randomEvaluate :: (Arbitrary a, Show a, Show b) => (a -> b) -> IO (String, String)
randomEvaluate f = do
    stdGen <- newStdGen
    let x = unGen arbitrary stdGen 1000
    let y = f x
    return (show x, show y)

在这里你可以看到它的实际效果:

*Main> randomEvaluate (\(a,b) -> a + b)
("(-292,-655)","-947")
*Main> randomEvaluate (\(a,b) -> a + b)
("(586,-905)","-319")
*Main> randomEvaluate (\(a,b) -> a + b)
("(547,-72)","475")

正如您所看到的那样,如果您发现它,可以将它与具有多个参数的函数一起使用。如果这还不够,那么事情会变得有点困难,但是应该可以使用某种类型的技巧。

多个参数,显式标记返回类型

这是一种需要“仅”将函数的返回值包装在newtype中的方法。 (对于非Haskell98功能,这可能是可以避免的):

class RandEval a where
    randomEvaluate :: StdGen -> a -> ([String], String)

newtype Ret a = Ret a

instance Show a => RandEval (Ret a)  where
    randomEvaluate _ (Ret x) = ([], show x)

instance (Show a, Arbitrary a, RandEval b) => RandEval (a -> b) where
    randomEvaluate stdGen f = (show x : args, ret)
        where (stdGen1, stdGen2) = split stdGen
              x = unGen arbitrary stdGen1 1000
              (args, ret) = randomEvaluate stdGen2 (f x) 

doRandomEvaluate :: RandEval a => a -> IO ([String], String)
doRandomEvaluate f = do
    stdGen <- newStdGen
    return $ randomEvaluate stdGen f

请在此处查看:

*Main> doRandomEvaluate (\a b -> Ret (a && b))
(["False","True"],"False")
*Main> doRandomEvaluate (\a b -> Ret (a + b))
(["944","758"],"1702")
*Main> doRandomEvaluate (\a b c -> Ret (a + b + c))
(["-274","413","865"],"1004")
*Main> doRandomEvaluate (\a b c d -> Ret (a + b + c + d))
(["-61","-503","-704","-877"],"-2145")

带语言扩展名的多个参数

如果还必须明确标记返回值,则可行,但使用语言扩展:

{-# LANGUAGE FlexibleInstances, UndecidableInstances, OverlappingInstances #-}

import Test.QuickCheck.Arbitrary
import Test.QuickCheck.Gen
import System.Random
import Control.Arrow

class RandEval a where
    randomEvaluate :: StdGen -> a -> ([String], String)

instance (Show a, Arbitrary a, RandEval b) => RandEval (a -> b) where
    randomEvaluate stdGen f = first (show x:) $ randomEvaluate stdGen2 (f x) 
        where (stdGen1, stdGen2) = split stdGen
              x = unGen arbitrary stdGen1 1000

instance Show a => RandEval a where
    randomEvaluate _ x = ([], show x)

doRandomEvaluate :: RandEval a => a -> IO ([String], String)
doRandomEvaluate f = do
    stdGen <- newStdGen
    return $ randomEvaluate stdGen f

以下是发布的原始用例:

*Main> doRandomEvaluate ( (+) :: Int -> Int -> Int )
(["-5998437593420471249","339001240294599646"],"-5659436353125871603")

但现在你正处于GHC如何解决重叠实例的奇思妙想。例如。即使有这个很好的(但也是非Haskell98)实例来显示布尔函数:

type BoolFun a = Bool -> a

instance Show a => Show (BoolFun a) where
    show f = "True -> " ++ show (f True) ++ ", False -> " ++ show (f False)

aBoolFun :: Bool -> BoolFun Bool
aBoolFun x y = x && y

您在doRandomEvaluate

中未看到此实例正在使用中
*Main> doRandomEvaluate aBoolFun 
    (["False","False"],"False")

使用原始解决方案,您可以:

*Main> doRandomEvaluate (Ret . aBoolFun)
(["False"],"True -> False, False -> False")
*Main> doRandomEvaluate (Ret . aBoolFun)
(["True"],"True -> True, False -> False")

警告

但请注意,这是一个滑坡。对上面代码的一个小改动,它在GHC 7.6.1中停止工作(但仍然适用于GHC 7.4.1):

instance (Show a, Arbitrary a, RandEval b) => RandEval (a -> b) where
    randomEvaluate stdGen f = (show x:args, ret)
        where (stdGen1, stdGen2) = split stdGen
              x = unGen arbitrary stdGen1 1000
              (args, ret) = randomEvaluate stdGen2 (f x) 

SPJ explains为什么这不是一个真正的错误 - 对我来说这是一个明确的迹象,表明这种方法将类型类hackery推得太过分了。

答案 1 :(得分:3)

QuickCheck非常简单:

Prelude> import Test.QuickCheck

提供了一个简单的驱动程序功能:

Prelude Test.QuickCheck> :t quickCheck
quickCheck :: Testable prop => prop -> IO ()

因此,定义具有'Testable'中找到的类型的东西:

Prelude Test.QuickCheck> let prop_commut a b = a + b == b + a
Prelude Test.QuickCheck> :t prop_commut
prop_commut :: (Eq a, Num a) => a -> a -> Bool

运行它:

Prelude Test.QuickCheck> quickCheck prop_commut 
+++ OK, passed 100 tests.

更全面的治疗see RWH