我写了一个matlab代码,用于使用Hough变换检测灰度图像中的圆圈。我想尽可能减少运行时间。
我使用的边缘检测是自定义实现,但它的运行时间足够快(我大约需要0.06秒)。但是,瓶颈是代码的其余部分(总运行时间约为6.35秒)。 BTW我使用tic / toc来计算运行时间。
以下是代码,如果有人可以看一下,我会非常感激:
function [ circles ] = findCircles(img)
% set low and high bounds for radii values
minR = 9;
[imgRows, imgCols] = size(img);
maxR = ceil(min(imgRows, imgCols)/2);
tic
% run edge detection on image
edgeImg = edgeDetect(img);
% get image size
[rows, cols] = size(edgeImg);
% initialize accumulator
houghAcc = zeros(rows, cols, maxR);
% get all edge pixels from image
edges = find(edgeImg);
% find number of edge pixels
edgeNum = size(edges);
% scan each edge
for currEdge = 1 : edgeNum
% get current edge x and y coordinations
[edgeY edgeX] = ind2sub([rows, cols], edges(currEdge));
% scan each all possible radii
for r = minR : maxR
% go over all possible 2*pi*r circle centers
for ang = 0 : 360
t = (ang * pi) / 180;
cX = round(edgeX - r*cos(t));
cY = round(edgeY - r*sin(t));
% check if center found is within image boundaries
if ( cX < cols && cX > 0 && cY < rows && cY > 0 )
% found circle with (cX,cY) as center and r as radius
houghAcc(cY,cX,r)=houghAcc(cY,cX,r)+1; % increment matching counter
end
end
end
end
% initialize circle list
circles = [];
% intialize index for next found circle
nextCircleIndx = 1;
% get counter list dimensions
[sizeX sizeY sizeR] = size(houghAcc);
% get max counter value from hough counter matrix
m = max(max(max(houghAcc)));
% calculate the minimal pixels that circle should have on perimeter
t = m * 0.42;
% scan each found circle
for cX = 1 : sizeX
for cY = 1 : sizeY
for r = 1 : sizeR
% threshold values
if houghAcc(cX, cY, r) > t
% circle is dominant enough, add it
circles(nextCircleIndx,:) = [cY , cX , r ,houghAcc(cX, cY, r)];
% increment index
nextCircleIndx = nextCircleIndx + 1;
end
end
end
end
% sort counters in descending order (according to votes for each
% circle)
circles = flipud(sortrows(circles,4));
% get circle list's size
[rows cols] = size(circles);
% scan circle list and check each pair of found circles
for i = 1 : rows-1
% get first circle's details:
% center
cX1 = circles(i,1);
cY1 = circles(i,2);
% radius
r1 = circles(i,3);
%hough counter
h1 = circles(i,4);
for j = i+1 : rows
%get second circle's details:
% center
cX2 = circles(j,1);
cY2 = circles(j,2);
% radius
r2 = circles(j,3);
%hough counter
h2 = circles(j,4);
% check if circle's actual difference is smaller than minimal
% radius allowed
if (cX1 - cX2)*(cX1 - cX2)+ (cY1 - cY2)*(cY1 - cY2) < (min(r1,r2))*(min(r1,r2)) && abs(r1 - r2) < minR
% both circles are similar, sum their counters and merge
% them to a circle with their avaraged values
circles(i,:)=[(cX1+cX2)/2, (cY1+cY2)/2, (r1+r2)/2, h1+h2];
% remove similar circle
circles(j,:)=[0,0,0,0];
end
end
end
sortParam = 3; % 1: x-center, 2: y-center, 3: radius, 4: hough counter
% sort the circles by the sort parameter, in descending order
circles = flipud(sortrows(circles,sortParam));
% get number of remained circles (= rows with non-zero values)
len = length(find(circles~=0))/4;
% remove duplicate similar circles from previus step
circles(circles == 0) = [];
% reshape circle list back to matrix form (previous step converted it
% to a vector)
circles = reshape(circles,len,4);
% get max value according to sort parameter
m = max(circles(:,sortParam));
%get size of new circle list (with no duplicate circles)
[newH newW] = size(circles);
% thresholding: remove hough counters that are less than 30% from sort
% parameter
for i= 1 : newH
% check if current circle's sorting parameter's value is smaller
% than threshold
if m - circles(i,sortParam) < m * 0.3
% plot(circles(i,1),circles(i,2),'xr'); % DEBUG - show centers
else
% remove current circle
circles(i,:)=[0,0,0,0];
end
end
% find number of remaining circles after thresholding
len = length(find(circles~=0))/4;
% delete rows that match circles removed in thresholding
circles(circles==0)=[];
% reshape circle list back to matrix form
circles=reshape(circles,len,4);
% convert circle list's values to integers (hough counters are already
% integers)
circles = uint8(circles(:,1:3));
toc
end
这段代码可以在哪里得到改进?谢谢你的帮助!
答案 0 :(得分:1)
对于填充for
矩阵的第一个houghAcc
块,我建议进行以下替换:
r = minR : maxR;
t = ( 0 : 359 ) * pi / 180; % following HighPerformaceMark suggestion
rsin = bsxfun( @times, r', sin(t) ); %'
rcos = bsxfun( @times, r', cos(t) ); %'
[edgeY edgeX] = find( edgeImg );
cX = round( bsxfun( @minus, edgeX, permute( rcos, [3 1 2] ) ) );
cY = round( bsxfun( @minus, edgeY, permute( rsin, [3 1 2] ) ) );
R = permute( repmat( r', [ 1 size(cX,1) size(cX,3) ] ), [2 1 3] ); %' to index accHough
% select valid indices
sel = ( cX > 0 & cY > 0 & cY < rows & cX < cols );
houghAcc = accumarray( {cY(sel(:)), cX(sel(:)), R(sel(:))}, 1, [rows, cols, maxR] );
对于扫描每个找到的圆圈的第二个for
块,我建议进行以下替换:
ind = find( houghAcc > t );
% sort the scores
sc = houghAcc(ind);
[sc si] = sort( sc , 'descend' );
% convert linear indices to x,y,r
[cX cY r] = ind2sub( size( houghAcc ), ind(si) );
circles = [ cX(:) cY(:) r(:) sc(:) ];