我正在尝试使用Flume-ng抓取90秒的日志信息并将其放入HDFS文件中。我有工作通过exec和tail查看日志文件然而它每5秒创建一个文件而不是我每隔90秒尝试配置一次。
我的flume.conf如下:
# example.conf: A single-node Flume configuration
# Name the components on this agent
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1
# Describe/configure source1
agent1.sources.source1.type = exec
agent1.sources.source1.command = tail -f /home/cloudera/LogCreator/fortune_log.log
# Describe sink1
agent1.sinks.sink1.type = hdfs
agent1.sinks.sink1.hdfs.path = hdfs://localhost/flume/logtest/
agent1.sinks.sink1.hdfs.filePrefix = LogCreateTest
# this parameter seems to be getting overridden
agent1.sinks.sink1.hdfs.rollInterval=90
agent1.sinks.sink1.hdfs.rollSize=0
agent1.sinks.sink1.hdfs.hdfs.rollCount = 0
# Use a channel which buffers events in memory
agent1.channels.channel1.type = memory
# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1
我试图通过参数 - agent1.sinks.sink1.hdfs.rollInterval = 90 来控制文件大小。
运行此配置会产生:
13/01/03 09:43:02 INFO properties.PropertiesFileConfigurationProvider: Reloading configuration file:/etc/flume-ng/conf/flume.conf
13/01/03 09:43:02 INFO conf.FlumeConfiguration: Processing:sink1
13/01/03 09:43:02 INFO conf.FlumeConfiguration: Processing:sink1
13/01/03 09:43:02 INFO conf.FlumeConfiguration: Processing:sink1
13/01/03 09:43:02 INFO conf.FlumeConfiguration: Processing:sink1
13/01/03 09:43:02 INFO conf.FlumeConfiguration: Processing:sink1
13/01/03 09:43:02 INFO conf.FlumeConfiguration: Processing:sink1
13/01/03 09:43:02 INFO conf.FlumeConfiguration: Processing:sink1
13/01/03 09:43:02 INFO conf.FlumeConfiguration: Added sinks: sink1 Agent: agent1
13/01/03 09:43:03 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for agents: [agent1]
13/01/03 09:43:03 INFO properties.PropertiesFileConfigurationProvider: Creating channels
13/01/03 09:43:03 INFO instrumentation.MonitoredCounterGroup: Monitoried counter group for type: CHANNEL, name: channel1, registered successfully.
13/01/03 09:43:03 INFO properties.PropertiesFileConfigurationProvider: created channel channel1
13/01/03 09:43:03 INFO sink.DefaultSinkFactory: Creating instance of sink: sink1, type: hdfs
13/01/03 09:43:03 INFO hdfs.HDFSEventSink: Hadoop Security enabled: false
13/01/03 09:43:03 INFO instrumentation.MonitoredCounterGroup: Monitoried counter group for type: SINK, name: sink1, registered successfully.
13/01/03 09:43:03 INFO nodemanager.DefaultLogicalNodeManager: Starting new configuration:{ sourceRunners:{source1=EventDrivenSourceRunner: { source:org.apache.flume.source.ExecSource{name:source1,state:IDLE} }} sinkRunners:{sink1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@1a50ca0c counterGroup:{ name:null counters:{} } }} channels:{channel1=org.apache.flume.channel.MemoryChannel{name: channel1}} }
13/01/03 09:43:03 INFO nodemanager.DefaultLogicalNodeManager: Starting Channel channel1
13/01/03 09:43:03 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: channel1 started
13/01/03 09:43:03 INFO nodemanager.DefaultLogicalNodeManager: Starting Sink sink1
13/01/03 09:43:03 INFO nodemanager.DefaultLogicalNodeManager: Starting Source source1
13/01/03 09:43:03 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: sink1 started
13/01/03 09:43:03 INFO source.ExecSource: Exec source starting with command:tail -f /home/cloudera/LogCreator/fortune_log.log
13/01/03 09:43:07 INFO hdfs.BucketWriter: Creating hdfs://localhost/flume/logtest//LogCreateTest.1357224186506.tmp
13/01/03 09:43:08 INFO hdfs.BucketWriter: Renaming hdfs://localhost/flume/logtest/LogCreateTest.1357224186506.tmp to hdfs://localhost/flume/logtest/LogCreateTest.1357224186506
13/01/03 09:43:08 INFO hdfs.BucketWriter: Creating hdfs://localhost/flume/logtest//LogCreateTest.1357224186507.tmp
13/01/03 09:43:12 INFO hdfs.BucketWriter: Renaming hdfs://localhost/flume/logtest/LogCreateTest.1357224186507.tmp to hdfs://localhost/flume/logtest/LogCreateTest.1357224186507
13/01/03 09:43:12 INFO hdfs.BucketWriter: Creating hdfs://localhost/flume/logtest//LogCreateTest.1357224186508.tmp
13/01/03 09:43:12 INFO hdfs.BucketWriter: Renaming hdfs://localhost/flume/logtest/LogCreateTest.1357224186508.tmp to hdfs://localhost/flume/logtest/LogCreateTest.1357224186508
13/01/03 09:43:12 INFO hdfs.BucketWriter: Creating hdfs://localhost/flume/logtest//LogCreateTest.1357224186509.tmp
13/01/03 09:43:18 INFO hdfs.BucketWriter: Renaming hdfs://localhost/flume/logtest/LogCreateTest.1357224186509.tmp to hdfs://localhost/flume/logtest/LogCreateTest.1357224186509
13/01/03 09:43:18 INFO hdfs.BucketWriter: Creating hdfs://localhost/flume/logtest//LogCreateTest.1357224186510.tmp
13/01/03 09:43:18 INFO hdfs.BucketWriter: Renaming hdfs://localhost/flume/logtest/LogCreateTest.1357224186510.tmp to hdfs://localhost/flume/logtest/LogCreateTest.1357224186510
正如您在时间戳中看到的那样,它大约每5秒左右创建一个文件。这会创建许多小文件。
我希望能够在更长的时间间隔(90秒)内创建文件。
答案 0 :(得分:3)
重写配置文件,指定更完整的参数选择。这个例子将在10k记录或10分钟之后写入。此外,我从内存通道更改为文件通道,以帮助确保数据流的可靠性。
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1
# Describe/configure source1
agent1.sources.source1.type = exec
agent1.sources.source1.command = tail -f /home/cloudera/LogCreator/fortune_log.log
# Describe sink1
agent1.sinks.sink1.type = hdfs
agent1.sinks.sink1.hdfs.path = hdfs://localhost/flume/logtest/
agent1.sinks.sink1.hdfs.filePrefix = LogCreateTest
# Number of seconds to wait before rolling current file (0 = never roll based on time interval)
agent1.sinks.sink1.hdfs.rollInterval = 600
# File size to trigger roll, in bytes (0: never roll based on file size)
agent1.sinks.sink1.hdfs.rollSize = 0
#Number of events written to file before it rolled (0 = never roll based on number of events)
agent1.sinks.sink1.hdfs.rollCount = 10000
# number of events written to file before it flushed to HDFS
agent1.sinks.sink1.hdfs.batchSize = 10000
agent1.sinks.sink1.hdfs.txnEventMax = 40000
# -- Compression codec. one of following : gzip, bzip2, lzo, snappy
# hdfs.codeC = gzip
#format: currently SequenceFile, DataStream or CompressedStream
#(1)DataStream will not compress output file and please don't set codeC
#(2)CompressedStream requires set hdfs.codeC with an available codeC
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.maxOpenFiles=50
# -- "Text" or "Writable"
#hdfs.writeFormat
agent1.sinks.sink1.hdfs.appendTimeout = 10000
agent1.sinks.sink1.hdfs.callTimeout = 10000
# Number of threads per HDFS sink for HDFS IO ops (open, write, etc.)
agent1.sinks.sink1.hdfs.threadsPoolSize=100
# Number of threads per HDFS sink for scheduling timed file rolling
agent1.sinks.sink1.hdfs.rollTimerPoolSize = 1
# hdfs.kerberosPrin--cipal Kerberos user principal for accessing secure HDFS
# hdfs.kerberosKey--tab Kerberos keytab for accessing secure HDFS
# hdfs.round false Should the timestamp be rounded down (if true, affects all time based escape sequences except %t)
# hdfs.roundValue1 Rounded down to the highest multiple of this (in the unit configured using
# hdfs.roundUnit), less than current time.
# hdfs.roundUnit second The unit of the round down value - second, minute or hour.
# serializer TEXT Other possible options include AVRO_EVENT or the fully-qualified class name of an implementation of the EventSerializer.Builder interface.
# serializer.*
# Use a channel which buffers events to a file
# -- The component type name, needs to be FILE.
agent1.channels.channel1.type = FILE
# checkpointDir ~/.flume/file-channel/checkpoint The directory where checkpoint file will be stored
# dataDirs ~/.flume/file-channel/data The directory where log files will be stored
# The maximum size of transaction supported by the channel
agent1.channels.channel1.transactionCapacity = 1000000
# Amount of time (in millis) between checkpoints
agent1.channels.channel1.checkpointInterval 30000
# Max size (in bytes) of a single log file
agent1.channels.channel1.maxFileSize = 2146435071
# Maximum capacity of the channel
agent1.channels.channel1.capacity 10000000
#keep-alive 3 Amount of time (in sec) to wait for a put operation
#write-timeout 3 Amount of time (in sec) to wait for a write operation
# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1
答案 1 :(得分:2)
根据org.apache.flume.sink.hdfs.BucketWriter的源代码:
/**
* Internal API intended for HDFSSink use.
* This class does file rolling and handles file formats and serialization.
* Only the public methods in this class are thread safe.
*/
class BucketWriter {
...
/**
* open() is called by append()
* @throws IOException
* @throws InterruptedException
*/
private void open() throws IOException, InterruptedException {
...
// if time-based rolling is enabled, schedule the roll
if (rollInterval > 0) {
Callable<Void> action = new Callable<Void>() {
public Void call() throws Exception {
LOG.debug("Rolling file ({}): Roll scheduled after {} sec elapsed.",
bucketPath, rollInterval);
try {
// Roll the file and remove reference from sfWriters map.
close(true);
} catch(Throwable t) {
LOG.error("Unexpected error", t);
}
return null;
}
};
timedRollFuture = timedRollerPool.schedule(action, rollInterval,
TimeUnit.SECONDS);
}
...
}
...
/**
* check if time to rotate the file
*/
private boolean shouldRotate() {
boolean doRotate = false;
if (writer.isUnderReplicated()) {
this.isUnderReplicated = true;
doRotate = true;
} else {
this.isUnderReplicated = false;
}
if ((rollCount > 0) && (rollCount <= eventCounter)) {
LOG.debug("rolling: rollCount: {}, events: {}", rollCount, eventCounter);
doRotate = true;
}
if ((rollSize > 0) && (rollSize <= processSize)) {
LOG.debug("rolling: rollSize: {}, bytes: {}", rollSize, processSize);
doRotate = true;
}
return doRotate;
}
...
}
和org.apache.flume.sink.hdfs.AbstractHDFSWriter
public abstract class AbstractHDFSWriter implements HDFSWriter {
...
@Override
public boolean isUnderReplicated() {
try {
int numBlocks = getNumCurrentReplicas();
if (numBlocks == -1) {
return false;
}
int desiredBlocks;
if (configuredMinReplicas != null) {
desiredBlocks = configuredMinReplicas;
} else {
desiredBlocks = getFsDesiredReplication();
}
return numBlocks < desiredBlocks;
} catch (IllegalAccessException e) {
logger.error("Unexpected error while checking replication factor", e);
} catch (InvocationTargetException e) {
logger.error("Unexpected error while checking replication factor", e);
} catch (IllegalArgumentException e) {
logger.error("Unexpected error while checking replication factor", e);
}
return false;
}
...
}
hdfs文件的滚动由4个条件控制:
在BucketWriter.class
中更改符合这些if段的值