使用Java中的Mallet折叠(估计新文档的主题)在LDA中

时间:2013-01-03 14:50:45

标签: java mallet topic-modeling

我正在通过Java使用Mallet,而我无法弄清楚如何针对我训练过的现有主题模型评估新文档。

我生成模型的初始代码与Mallett Developers Guide for Topic Modelling中的代码非常相似,之后我只是将模型保存为Java对象。在稍后的过程中,我从文件重新加载该Java对象,通过.addInstances()添加新实例,然后根据原始训练集中找到的主题仅评估这些新实例。

This stats.SE thread提供了一些高级别的建议,但我看不出如何将它们用于Mallet框架。

任何帮助都非常感激。

2 个答案:

答案 0 :(得分:3)

我发现答案隐藏在slide-deck from Mallet's lead developer

TopicInferencer inferencer = model.getInferencer();
double[] topicProbs = inferencer.getSampledDistribution(newInstance, 100, 10, 10);

答案 1 :(得分:3)

推理实际上也列在问题中提供的example link中(最后几行)。

对于任何对保存/加载训练模型的整个代码感兴趣的人,然后使用它来推断新文档的模型分布 - 这里有一些片段:

model.estimate()完成后,您拥有实际训练的模型,因此您可以使用标准Java ObjectOutputStream对其进行序列化(因为ParallelTopicModel实现Serializable):

try {
    FileOutputStream outFile = new FileOutputStream("model.ser");
    ObjectOutputStream oos = new ObjectOutputStream(outFile);
    oos.writeObject(model);
    oos.close();
} catch (FileNotFoundException ex) {
    // handle this error
} catch (IOException ex) {
    // handle this error
}

但是请注意,当你推断时,你还需要通过相同的管道传递新的句子(如Instance)以便预处理它(tokenzie等),因此,你还需要保存管道-list(因为我们在创建实例然后序列化时使用SerialPipe):

// initialize the pipelist (using in model training)
SerialPipes pipes = new SerialPipes(pipeList);

try {
    FileOutputStream outFile = new FileOutputStream("pipes.ser");
    ObjectOutputStream oos = new ObjectOutputStream(outFile);
    oos.writeObject(pipes);
    oos.close();
} catch (FileNotFoundException ex) {
    // handle error
} catch (IOException ex) {
    // handle error
}

为了加载模型/管道并将它们用于推理,我们需要反序列化:

private static void InferByModel(String sentence) {
    // define model and pipeline
    ParallelTopicModel model = null;
    SerialPipes pipes = null;

    // load the model
    try {
        FileInputStream outFile = new FileInputStream("model.ser");
        ObjectInputStream oos = new ObjectInputStream(outFile);
        model = (ParallelTopicModel) oos.readObject();
    } catch (IOException ex) {
        System.out.println("Could not read model from file: " + ex);
    } catch (ClassNotFoundException ex) {
        System.out.println("Could not load the model: " + ex);
    }

    // load the pipeline
    try {
        FileInputStream outFile = new FileInputStream("pipes.ser");
        ObjectInputStream oos = new ObjectInputStream(outFile);
        pipes = (SerialPipes) oos.readObject();
    } catch (IOException ex) {
        System.out.println("Could not read pipes from file: " + ex);
    } catch (ClassNotFoundException ex) {
        System.out.println("Could not load the pipes: " + ex);
    }

    // if both are properly loaded
    if (model != null && pipes != null){

        // Create a new instance named "test instance" with empty target 
        // and source fields note we are using the pipes list here
        InstanceList testing = new InstanceList(pipes);   
        testing.addThruPipe(
            new Instance(sentence, null, "test instance", null));

        // here we get an inferencer from our loaded model and use it
        TopicInferencer inferencer = model.getInferencer();
        double[] testProbabilities = inferencer
                   .getSampledDistribution(testing.get(0), 10, 1, 5);
        System.out.println("0\t" + testProbabilities[0]);
    }
}

由于某种原因,我没有得到与原始模型完全相同的推断 - 但这是另一个问题的问题(如果有人知道,我会很高兴听到)