如何通过matplotlib绘制3D数据集中几乎任意的平面?

时间:2013-01-03 12:24:10

标签: python numpy matplotlib

有一个包含形状的3D数据的数组,例如(64,64,64),如何通过该数据集绘制由点和法线给出的平面(类似于晶体学中的hkl平面)? 类似于通过在数据中旋转平面可以在MayaVi中完成的操作。

在大多数情况下,结果图将包含非方形平面。 这些可以用matplotlib(某种非矩形补丁)完成吗?

编辑:我自己几乎解决了这个问题(见下文),但仍然想知道如何在matplotlib中绘制非矩形补丁......?

修改:由于下面的讨论,我重申了这个问题。

5 个答案:

答案 0 :(得分:2)

这很有趣,我今天回答的类似问题。要走的路是:插值。您可以使用scipy.interpolate:

中的griddata

Griddata

此页面提供了一个非常好的示例,该功能的签名非常接近您的数据。

您仍然需要以某种方式定义要为其插入数据的平面上的点。我将看看这几年前的线性代数课程

答案 1 :(得分:1)

为了减少需求,我准备了一个简单的例子

import numpy as np
import pylab as plt

data = np.arange((64**3))
data.resize((64,64,64))

def get_slice(volume, orientation, index):
    orientation2slicefunc = {
        "x" : lambda ar:ar[index,:,:], 
        "y" : lambda ar:ar[:,index,:],  
        "z" : lambda ar:ar[:,:,index]
    }
    return orientation2slicefunc[orientation](volume)

plt.subplot(221)
plt.imshow(get_slice(data, "x", 10), vmin=0, vmax=64**3)

plt.subplot(222)
plt.imshow(get_slice(data, "x", 39), vmin=0, vmax=64**3)

plt.subplot(223)
plt.imshow(get_slice(data, "y", 15), vmin=0, vmax=64**3)
plt.subplot(224)
plt.imshow(get_slice(data, "z", 25), vmin=0, vmax=64**3)  

plt.show()  

这导致以下情节:

Four example slices

主要技巧是对lambda方法的字典映射定向,这使我们免于编写恼人的if-then-else-blocks。当然你可以决定给出不同的名字, 例如,数字,为方向。

也许这有助于你。

和Thorsten

P.S。:我不关心“IndexOutOfRange”,对我来说这是o.k.让这个异常弹出,因为在这种情况下完全可以理解。

答案 2 :(得分:0)

我有这个问题的倒数第二个解决方案。通过使用Plot a plane based on a normal vector and a point in Matlab or matplotlib的第二个答案部分解决:

# coding: utf-8
import numpy as np
from matplotlib.pyplot import imshow,show

A=np.empty((64,64,64)) #This is the data array
def f(x,y):
    return np.sin(x/(2*np.pi))+np.cos(y/(2*np.pi))
xx,yy= np.meshgrid(range(64), range(64))
for x in range(64):
    A[:,:,x]=f(xx,yy)*np.cos(x/np.pi)

N=np.zeros((64,64)) 
"""This is the plane we cut from A. 
It should be larger than 64, due to diagonal planes being larger. 
Will be fixed."""

normal=np.array([-1,-1,1]) #Define cut plane here. Normal vector components restricted to integers
point=np.array([0,0,0])
d = -np.sum(point*normal)

def plane(x,y): # Get plane's z values
    return (-normal[0]*x-normal[1]*y-d)/normal[2]

def getZZ(x,y): #Get z for all values x,y. If z>64 it's out of range
    for i in x:
        for j in y:
            if plane(i,j)<64:
                N[i,j]=A[i,j,plane(i,j)]

getZZ(range(64),range(64))
imshow(N, interpolation="Nearest")
show()

这不是最终解决方案,因为该图不限于具有z值的点,不考虑大于64 * 64的平面,并且必须将平面定义为(0,0,0)。

答案 3 :(得分:0)

我必须为MRI数据增强做类似的事情:

可能可以优化代码,但它仍然可以正常工作。
我的数据是代表MRI扫描仪的3维numpy数组。它的大小为[128,128,128],但是可以修改代码以接受任何尺寸。同样,当平面在立方体边界之外时,还必须在主函数中为变量 fill 提供默认值,在我的情况下,我选择: data_cube [0:5,0:5 ,0:5] .mean()

def create_normal_vector(x, y,z):

    normal = np.asarray([x,y,z])
    normal = normal/np.sqrt(sum(normal**2))
    return normal



def get_plane_equation_parameters(normal,point):
    a,b,c = normal
    d = np.dot(normal,point)
    return a,b,c,d        #ax+by+cz=d  

def get_point_plane_proximity(plane,point):
    #just aproximation
    return np.dot(plane[0:-1],point) - plane[-1]

def get_corner_interesections(plane, cube_dim = 128): #to reduce the search space
    #dimension is 128,128,128
    corners_list = []
    only_x = np.zeros(4)
    min_prox_x = 9999
    min_prox_y = 9999
    min_prox_z = 9999
    min_prox_yz = 9999
    for i in range(cube_dim):
        temp_min_prox_x=abs(get_point_plane_proximity(plane,np.asarray([i,0,0])))
       # print("pseudo distance x: {0}, point: [{1},0,0]".format(temp_min_prox_x,i))
        if temp_min_prox_x <  min_prox_x:
            min_prox_x = temp_min_prox_x
            corner_intersection_x = np.asarray([i,0,0])
            only_x[0]= i

        temp_min_prox_y=abs(get_point_plane_proximity(plane,np.asarray([i,cube_dim,0])))
       # print("pseudo distance y: {0}, point: [{1},{2},0]".format(temp_min_prox_y,i,cube_dim))

        if temp_min_prox_y <  min_prox_y:
            min_prox_y = temp_min_prox_y
            corner_intersection_y = np.asarray([i,cube_dim,0]) 
            only_x[1]= i

        temp_min_prox_z=abs(get_point_plane_proximity(plane,np.asarray([i,0,cube_dim])))
        #print("pseudo distance z: {0}, point: [{1},0,{2}]".format(temp_min_prox_z,i,cube_dim))

        if temp_min_prox_z <  min_prox_z:
            min_prox_z = temp_min_prox_z
            corner_intersection_z = np.asarray([i,0,cube_dim])
            only_x[2]= i

        temp_min_prox_yz=abs(get_point_plane_proximity(plane,np.asarray([i,cube_dim,cube_dim])))
        #print("pseudo distance z: {0}, point: [{1},{2},{2}]".format(temp_min_prox_yz,i,cube_dim))

        if temp_min_prox_yz <  min_prox_yz:
            min_prox_yz = temp_min_prox_yz
            corner_intersection_yz = np.asarray([i,cube_dim,cube_dim])
            only_x[3]= i

    corners_list.append(corner_intersection_x)      
    corners_list.append(corner_intersection_y)            
    corners_list.append(corner_intersection_z)            
    corners_list.append(corner_intersection_yz)
    corners_list.append(only_x.min()) 
    corners_list.append(only_x.max())           

    return corners_list       

def get_points_intersection(plane,min_x,max_x,data_cube,shape=128):

    fill = data_cube[0:5,0:5,0:5].mean() #this can be a parameter
    extended_data_cube = np.ones([shape+2,shape,shape])*fill
    extended_data_cube[1:shape+1,:,:] = data_cube 
    diag_image = np.zeros([shape,shape])
    min_x_value = 999999

    for i in range(shape):

        for j in range(shape):

            for k in range(int(min_x),int(max_x)+1):


                current_value = abs(get_point_plane_proximity(plane,np.asarray([k,i,j])))
                #print("current_value:{0}, val: [{1},{2},{3}]".format(current_value,k,i,j))
                if current_value < min_x_value:
                    diag_image[i,j] = extended_data_cube[k,i,j]
                    min_x_value = current_value

            min_x_value = 999999

    return diag_image   

其工作方式如下:

您创建一个法线向量: 例如[5,0,3]

normal1=create_normal_vector(5, 0,3) #this is only to normalize

然后创建一个点: (我的多维数据集数据形状为[128,128,128])

point = [64,64,64]

您计算平面方程参数[a,b,c,d],其中ax + by + cz = d

plane1=get_plane_equation_parameters(normal1,point)

然后减少搜索空间,您可以计算平面与立方体的交点:

corners1 = get_corner_interesections(plane1,128)

其中corners1 = [交点[x,0,0],交点[x,128,0],交点[x,0,128],交点[x,128,128],最小交点[x,y,z],最大值相交[x,y,z]]

使用所有这些,您可以计算出立方体和平面之间的交点:

image1 = get_points_intersection(plane1,corners1[-2],corners1[-1],data_cube)

一些例子:

正常值为[1,0,0]点为[64,64,64]

enter image description here

正态是[5,1,0],[5,1,1],[5,0,1]点是[64,64,64]:

enter image description here

正常点是[5,3,0],[5,3,3],[5,0,3]点是[64,64,64]:

enter image description here

正常值为[5,-5,0],[5,-5,-5],[5,0,-5]点为[64,64,64]:

enter image description here

谢谢。

答案 4 :(得分:0)

这里的其他答案对于像素上的显式循环或使用scipy.interpolate.griddata似乎不是非常有效,scipy.ndimage.map_coordinates是为非结构化输入数据设计的。这是一种有效的(矢量化)通用解决方案。

有一个纯numpy实现(用于最近邻“插值”)和一个用于线性插值的函数,它将插值委托给import numpy as np from scipy.ndimage import map_coordinates def slice_datacube(cube, center, eXY, mXY, fill=np.nan, interp=True): """Get a 2D slice from a 3-D array. Copyright: Han-Kwang Nienhuys, 2020. License: any of CC-BY-SA, CC-BY, BSD, GPL, LGPL Reference: https://stackoverflow.com/a/62733930/6228891 Parameters: - cube: 3D array, assumed shape (nx, ny, nz). - center: shape (3,) with coordinates of center. can be float. - eXY: unit vectors, shape (2, 3) - for X and Y axes of the slice. (unit vectors must be orthogonal; normalization is optional). - mXY: size tuple of output array (mX, mY) - int. - fill: value to use for out-of-range points. - interp: whether to interpolate (rather than using 'nearest') Return: - slice: array, shape (mX, mY). """ center = np.array(center, dtype=float) assert center.shape == (3,) eXY = np.array(eXY)/np.linalg.norm(eXY, axis=1)[:, np.newaxis] if not np.isclose(eXY[0] @ eXY[1], 0, atol=1e-6): raise ValueError(f'eX and eY not orthogonal.') # R: rotation matrix: data_coords = center + R @ slice_coords eZ = np.cross(eXY[0], eXY[1]) R = np.array([eXY[0], eXY[1], eZ], dtype=np.float32).T # setup slice points P with coordinates (X, Y, 0) mX, mY = int(mXY[0]), int(mXY[1]) Xs = np.arange(0.5-mX/2, 0.5+mX/2) Ys = np.arange(0.5-mY/2, 0.5+mY/2) PP = np.zeros((3, mX, mY), dtype=np.float32) PP[0, :, :] = Xs.reshape(mX, 1) PP[1, :, :] = Ys.reshape(1, mY) # Transform to data coordinates (x, y, z) - idx.shape == (3, mX, mY) if interp: idx = np.einsum('il,ljk->ijk', R, PP) + center.reshape(3, 1, 1) slice = map_coordinates(cube, idx, order=1, mode='constant', cval=fill) else: idx = np.einsum('il,ljk->ijk', R, PP) + (0.5 + center.reshape(3, 1, 1)) idx = idx.astype(np.int16) # Find out which coordinates are out of range - shape (mX, mY) badpoints = np.any([ idx[0, :, :] < 0, idx[0, :, :] >= cube.shape[0], idx[1, :, :] < 0, idx[1, :, :] >= cube.shape[1], idx[2, :, :] < 0, idx[2, :, :] >= cube.shape[2], ], axis=0) idx[:, badpoints] = 0 slice = cube[idx[0], idx[1], idx[2]] slice[badpoints] = fill return slice # Demonstration nx, ny, nz = 50, 70, 100 cube = np.full((nx, ny, nz), np.float32(1)) cube[nx//4:nx*3//4, :, :] += 1 cube[:, ny//2:ny*3//4, :] += 3 cube[:, :, nz//4:nz//2] += 7 cube[nx//3-2:nx//3+2, ny//2-2:ny//2+2, :] = 0 # black dot Rz, Rx = np.pi/6, np.pi/4 # rotation angles around z and x cz, sz = np.cos(Rz), np.sin(Rz) cx, sx = np.cos(Rx), np.sin(Rx) Rmz = np.array([[cz, -sz, 0], [sz, cz, 0], [0, 0, 1]]) Rmx = np.array([[1, 0, 0], [0, cx, -sx], [0, sx, cx]]) eXY = (Rmx @ Rmz).T[:2] slice = slice_datacube( cube, center=[nx/3, ny/2, nz*0.7], eXY=eXY, mXY=[80, 90], fill=np.nan, interp=False ) import matplotlib.pyplot as plt plt.close('all') plt.imshow(slice.T) # imshow expects shape (mY, mX) plt.colorbar() 。 (当问这个问题时,后者的功能可能在2013年不存在。)

interp=False

输出(对于interp=False):

Test case: 2D slice of 3D dataset

对于此测试用例(50x70x100数据立方体,切片尺寸为80x90),我的笔记本电脑的运行时间为376 µs(interp=True)和550 µs(net::ERR_SSL_PROTOCOL_ERROR.)。