data.table内部/外部连接,在double类型的连接列中使用NA?

时间:2012-12-28 21:31:07

标签: r inner-join data.table outer-join

根据这篇维基百科文章SQL join,我希望能够清楚地了解如何与data.table建立联接。 在这个过程中,我们可能在加入NAs时发现了一个错误。 以wiki为例:

R) X = data.table(name=c("Raf","Jon","Ste","Rob","Smi","Joh"),depID=c(31,33,33,34,34,NA),key="depID")
R) Y = data.table(depID=c(31,33,34,35),depName=c("Sal","Eng","Cle","Mar"),key="depID")
R) X
   name depID
1:  Joh    NA
2:  Raf    31
3:  Jon    33
4:  Ste    33
5:  Rob    34
6:  Smi    34
R) Y
   depID depName
1:    31     Sal
2:    33     Eng
3:    34     Cle
4:    35     Mar

LEFT OUTER JOIN

R) merge.data.frame(X,Y,all.x=TRUE)
  depID name depName
1    31  Raf     Sal
2    33  Jon     Eng
3    33  Ste     Eng
4    34  Rob     Cle
5    34  Smi     Cle
6    NA  Joh    <NA>

merge.data.table不会输出相同的结果,并显示我认为lign 2上的错误。

R) merge(X,Y,all.x=TRUE)
   depID name depName
1:    NA  Joh     Eng
2:    31  Raf      NA
3:    33  Jon     Eng
4:    33  Ste     Eng
5:    34  Rob     Cle
6:    34  Smi     Cle
R) Y[X] #same -> :(
   depID depName name
1:    NA     Eng  Joh
2:    31      NA  Raf
3:    33     Eng  Jon
4:    33     Eng  Ste
5:    34     Cle  Rob
6:    34     Cle  Smi

RIGHT OUTER JOIN 看起来像是一样的

R) merge.data.frame(X,Y,all.y=TRUE)
  depID name depName
1    31  Raf     Sal
2    33  Jon     Eng
3    33  Ste     Eng
4    34  Rob     Cle
5    34  Smi     Cle
6    35 <NA>     Mar

R) merge(X,Y,all.y=TRUE)
   depID name depName
1:    NA  Joh     Eng
2:    31   NA     Sal
3:    33  Jon     Eng
4:    33  Ste     Eng
5:    34  Rob     Cle 
6:    34  Smi     Cle
7:    35   NA     Mar

INNER(NATURAL)JOIN

R) merge.data.frame(X,Y)
  depID name depName
1    31  Raf     Sal
2    33  Jon     Eng
3    33  Ste     Eng
4    34  Rob     Cle
5    34  Smi     Cle
R) merge(X,Y)
   depID name depName
1:    NA  Joh     Eng
2:    33  Jon     Eng
3:    33  Ste     Eng
4:    34  Rob     Cle
5:    34  Smi     Cle

3 个答案:

答案 0 :(得分:8)

是的,它看起来像一个(令人尴尬的)与关键字NA相关的新bug。在关键不可能的情况下,还有其他关于NA的讨论,但我没有意识到它会以这种方式搞砸。将调查。谢谢......

#2453 NA in double key column messes up joins (NA in integer and character ok)

现已修复1.8.7(提交780),来自NEWS:

  

类型为double的连接列中的NA可能导致X [Y]和合并(X,Y)返回不正确的结果,#2453。由于C源中的错误x == NA_REAL应该是ISNA(x)。对键控连接的双重支持是对data.table的一个相对较新的补充,但同样令人尴尬。固定和测试添加。非常感谢有关彻底和可重复报告的统计数据。

答案 1 :(得分:2)

对其他答案中的评论进行跟进,是的,以下证明它只影响double类型列(integer中的NA和character列都可以。)

X = data.table(name=c("Raf","Jon","Ste","Rob","Smi","Joh"),
               depID=as.integer(c(31,33,33,34,34,NA)),key="depID")
Y = data.table(depID=as.integer(c(31,33,34,35)),
               depName=c("Sal","Eng","Cle","Mar"),key="depID")
Y[X]
   depID depName name
1:    NA      NA  Joh
2:    31     Sal  Raf
3:    33     Eng  Jon
4:    33     Eng  Ste
5:    34     Cle  Rob
6:    34     Cle  Smi

merge.data.frame(X,Y,all.x=T)
  depID name depName
1    31  Raf     Sal
2    33  Jon     Eng
3    33  Ste     Eng
4    34  Rob     Cle
5    34  Smi     Cle
6    NA  Joh    <NA>

Y = data.table(depID=as.character(c(31,33,34,35)),
               depName=c("Sal","Eng","Cle","Mar"),key="depID")
X = data.table(name=c("Raf","Jon","Ste","Rob","Smi","Joh"),
               depID=as.character(c(31,33,33,34,34,NA)),key="depID")
X
   name depID
1:  Raf    31
2:  Jon    33
3:  Ste    33
4:  Rob    34
5:  Smi    34
6:  Joh    NA
Y
   depID depName
1:    31     Sal
2:    33     Eng
3:    34     Cle
4:    35     Mar
str(X)
Classes ‘data.table’ and 'data.frame':  6 obs. of  2 variables:
 $ name : chr  "Raf" "Jon" "Ste" "Rob" ...
 $ depID: chr  "31" "33" "33" "34" ...
 - attr(*, "sorted")= chr "depID"
 - attr(*, ".internal.selfref")=<externalptr> 

merge.data.frame(X,Y,all.x=T)
  depID name depName
1    31  Raf     Sal
2    33  Jon     Eng
3    33  Ste     Eng
4    34  Rob     Cle
5    34  Smi     Cle
6  <NA>  Joh    <NA>

Y[X]
   depID depName name
1:    31     Sal  Raf
2:    33     Eng  Jon
3:    33     Eng  Ste
4:    34     Cle  Rob
5:    34     Cle  Smi
6:    NA      NA  Joh

在V.1.8.7中由MATTHEW DOWLE固定的问题

答案 2 :(得分:1)

一些有用的信息:

library(data.table);

X <- data.table(name=c("Raf","Jon","Ste","Rob","Smi","Joh"),depID=c(31,33,33,34,34,NA),key="depID")
#R) X
   #name depID
#1:  Joh    NA
#2:  Raf    31
#3:  Jon    33
#4:  Ste    33
#5:  Rob    34
#6:  Smi    34

Y <- data.table(depID=c(31,33,34,35),depName=c("Sal","Eng","Cle","Mar"),key="depID")
#R) Y
   #depID depName
#1:    31     Sal
#2:    33     Eng
#3:    34     Cle
#4:    35     Mar

#################
#LEFT OUTER JOIN#
#################
LJ <- merge.data.frame(X,Y,by="depID",all.x=TRUE); #by is implicit (see ?merge.data.frame)
#R) LJ
  #depID name depName
#1    31  Raf     Sal
#2    33  Jon     Eng
#3    33  Ste     Eng
#4    34  Rob     Cle
#5    34  Smi     Cle
#6    NA  Joh    <NA>

LJ2 <- Y[X];
#R) LJ2
   #depID depName name
#1:    NA      NA  Joh
#2:    31     Sal  Raf
#3:    33     Eng  Jon
#4:    33     Eng  Ste
#5:    34     Cle  Rob
#6:    34     Cle  Smi

##################
#RIGHT OUTER JOIN#
##################
RJ <- merge.data.frame(X,Y,by="depID",all.y=TRUE); #by is implicit (see ?merge.data.frame)
#R) RJ 
  #depID name depName
#1    31  Raf     Sal
#2    33  Jon     Eng
#3    33  Ste     Eng
#4    34  Rob     Cle
#5    34  Smi     Cle
#6    35 <NA>     Mar

RJ2 <- X[Y];
#R) RJ2
   #depID name depName
#1:    31  Raf     Sal
#2:    33  Jon     Eng
#3:    33  Ste     Eng
#4:    34  Rob     Cle
#5:    34  Smi     Cle
#6:    35   NA     Mar

#################
#FULL OUTER JOIN#
#################
FJ <- merge.data.frame(X,Y,all=T)
#R) FJ
  #depID name depName
#1    31  Raf     Sal
#2    33  Jon     Eng
#3    33  Ste     Eng
#4    34  Rob     Cle
#5    34  Smi     Cle
#6    35 <NA>     Mar
#7    NA  Joh    <NA>

FJ2 <- merge(X,Y,all=T)
#R) FJ2
   #depID name depName
#1:    NA  Joh      NA
#2:    31  Raf     Sal
#3:    33  Jon     Eng
#4:    33  Ste     Eng
#5:    34  Rob     Cle
#6:    34  Smi     Cle
#7:    35   NA     Mar

####################
#NATURAL INNER JOIN#
####################
IJ <- merge.data.frame(X,Y)
#R) IJ
  #depID name depName
#1    31  Raf     Sal
#2    33  Jon     Eng
#3    33  Ste     Eng
#4    34  Rob     Cle
#5    34  Smi     Cle

IJ2 <- merge(X,Y)
#R) IJ2
   #depID name depName
#1:    31  Raf     Sal
#2:    33  Jon     Eng
#3:    33  Ste     Eng
#4:    34  Rob     Cle
#5:    34  Smi     Cle


A <- data.table(time=as.POSIXct(c("10:01:01","10:01:02","10:01:04","10:01:05","10:01:02","10:01:01","10:01:01"),format="%H:%M:%S"),
                b=c("a","a","a","a","b","c","c"), 
                d=c(1,1.9,2,1.8,5,4.1,4.2));
B <- data.table(time=as.POSIXct(c("10:01:01","10:01:03","10:01:00","10:01:01"),format="%H:%M:%S"),b=c("a","a","c","d"), e=c(1L,2L,3L,4L));
setkey(A,b,time)
setkey(B,b,time)


###########
#ASOF JOIN#
###########
AOJ <- B[A,roll=T]
#R) AOJ
   #b                time  e   d
#1: a 2013-01-11 10:01:01  1 1.0
#2: a 2013-01-11 10:01:02  1 1.9
#3: a 2013-01-11 10:01:04  2 2.0
#4: a 2013-01-11 10:01:05  2 1.8
#5: b 2013-01-11 10:01:02 NA 5.0
#6: c 2013-01-11 10:01:01  3 4.1
#7: c 2013-01-11 10:01:01  3 4.2