我一直在ACM提交这个问题的程序。 Problem ID=1922但我的解决方案在测试3上不断超出时间限制。
我的想法是使用蛮力,但有一些分支切断。以下是我的Java代码,任何更快的解决方案或改进都会受到赞赏......我想这并不难,因为难度只有195,但我不能接受它。
终于接受了。该算法首先对英雄进行排序,然后从最小的愿望开始。只是O(n)..
我的Java代码到目前为止最快Solution Rank
非常感谢!
public class testtest
{
static boolean[] used;
// length of heros
static int ulen;
// list of heros
static Wish[] w;
// number of possible teams
static int count = 0;
// and output
static StringBuilder str = new StringBuilder();
// add the team
// check if it is a valid team
static boolean check(int len)
{
for (int i = 0; i < ulen; i ++)
{
if (!used[i])
{
// adding another hero makes it reliable, so invalid
if (w[i].wish <= len + 1)
{
return false;
}
}
}
return true;
}
// search the teams, team size = total, current pick = len, start from root + 1
static void search(int root, int total, int len)
{
if (len >= total) // finish picking len heros
{
if (check(total)) // valid
{
print(total); // add to output
}
return;
}
for (int i = root + 1; i < ulen; i ++)
{
if (w[i].wish > len + ulen - i)
{
return; // no enough heros left, so return
}
else
if (w[i].wish <= total) // valid hero for this team
{
used[i] = true;
search(i, total, len + 1); // search next hero
used[i] = false;
}
}
}
public static void main(String[] args) throws IOException
{
BufferedReader rr = new BufferedReader(new InputStreamReader(System.in));
ulen = Integer.parseInt(rr.readLine());
w = new Wish[ulen];
for (int i = 0; i < ulen; i ++)
{
w[i] = new Wish(i + 1, Integer.parseInt(rr.readLine()));
}
Arrays.sort(w);
used = new boolean[ulen];
Arrays.fill(used, false);
for (int i = 1; i <= ulen; i ++)
{
for (int j = 0; j <= ulen - i; j ++)
{
if (w[j].wish <= i) // this hero is valid
{
used[j] = true;
search(j, i, 1);
used[j] = false;
}
}
}
System.out.println(count);
System.out.print(str);
}
}
答案 0 :(得分:1)
这是我在~0.00013秒内(在我的CPU上)为样本测试执行的内容:
import java.io.*;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.util.HashMap;
import java.util.Map.Entry;
import java.util.Arrays;
/**
* Hero.java
*
* This program solves the Super Hero problem put forth by Timus Online Judge
* http://acm.timus.ru/problem.aspx?space=1&num=1922
*
* @author Hunter McMillen
* @version 1.0 12/29/2012
*/
public class Hero {
private static Map<Integer, Integer> indexMap = new HashMap<Integer, Integer>();
private static List<Integer> indices = new ArrayList<Integer>();
private static boolean[] used;
/**
* Entry point into the application
*
* @args command line arguments
*/
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int numHeroes, wish;
List<Integer> heroes = new ArrayList<Integer>();
List<List<Integer>> groups;
// read number of heroes
numHeroes = Integer.parseInt(in.readLine());
// read 'numHeroes' wishes from stdin
// filter out heroes that have a minimum required that exceeds
// the number of heroes
for(int i = 0; i < numHeroes; i++) {
wish = Integer.parseInt(in.readLine());
if(wish <= numHeroes)
heroes.add(wish);
}
// split into groups
groups = reliableGroups(heroes);
// output results
System.out.println(groups.size());
for(List<Integer> g : groups) {
System.out.println(g.size() + " " + g.toString().replaceAll("[\\]\\[\\,]", ""));
}
}
/**
* Determines whether a group is effective, meaning that all wishes
* for that group are met
*
* @group The group to evaluate for effectiveness
*/
public static boolean isEffective(List<Integer> group) {
int maxWish = Integer.MIN_VALUE;
int temp;
// find the maximum wish size of all members in group
for(int i = 0; i < group.size(); i++) {
if((temp = indexMap.get(group.get(i))) > maxWish)
maxWish = temp;
}
// make sure that the maximum wish size is respected
return group.size() >= maxWish;
}
/**
* Checks to see if there exists some other superhero
* that when added to this group makes another effective group
*
* @effectiveGroup The current grouping that is effective but might
* not be reliable
*/
public static boolean isReliable(List<Integer> effectiveGroup) {
for(int i = 1; i <= indices.size(); i++) {
if(!used[i]) {
// add another hero to this group to see if it remains effective
effectiveGroup.add(i);
// if it is still effective, then this group is not reliable
if(isEffective(effectiveGroup))
return false;
// remove the hero that was temporarily added
effectiveGroup.remove(effectiveGroup.size()-1);
}
}
// true if adding any unused member to this group made it ineffective
return true;
}
/**
* Separates the List<Integer> of heroes into reliable groups
*
* @heroes The List of heroes
*/
public static List<List<Integer>> reliableGroups(List<Integer> heroes) {
List<List<Integer>> groups = new ArrayList<List<Integer>>();
boolean effective = true;
int h, current;
// create HashMap with mapping between hero wish values and their index
for(int i = 1; i <= heroes.size(); i++) {
indices.add(i);
indexMap.put(i, heroes.get(i-1));
}
// create an array to track which heroes have been used
used = new boolean[indices.size()+1];
Arrays.fill(used, false);
List<int[]> combinations;
List<Integer> tempList;
for(int i = 1; i <= indices.size(); i++) {
h = indexMap.get(i);
combinations = combination(heroes, h);
// iterate over all combinations making sure the wish values are below
// the threshold for this hero at map index `i`
for(int[] aCombination : combinations) {
for(int j = 0; j < aCombination.length; j++) {
current = aCombination[j];
used[current] = true;
if(indexMap.get(current) > h) {
effective = false;
break;
}
}
// create a List from the integer[] combination
tempList = asList(aCombination);
// if the group makeup is reliable, save it
if(effective && !groups.contains(tempList) && isReliable(tempList))
groups.add(new ArrayList<Integer>(tempList));
// reset flags
effective = true;
Arrays.fill(used, false);
}
}
return groups;
}
/**
* Helper method that returns a List<Integer> given
* an array of primitive ints
*
* @array The array to convert to a List<Integer>
*/
public static List<Integer> asList(int[] array) {
List<Integer> boxed = new ArrayList<Integer>();
for(int i = 0; i < array.length; i++) {
boxed.add(array[i]);
}
return boxed;
}
/**
* Generates the intial r combination in ascending order
* i.e [1, 2, 3, 4, ..., r]
*
* @r The size of the intial combination
*/
public static int[] initialCombination(int r) {
int[] indices = new int[r];
for(int i = 0; i < r; i++)
indices[i] = i+1;
return indices;
}
/**
* Generates the next combination given an array of indices
*
* @indicesIn The array of indices
* @n The size of this combination
*/
public static int[] nextCombination(int[] indicesIn, int n) {
int[] indices = (int[])indicesIn.clone();
int r = indices.length;
// find the rightmost index that is not at its final highest value
int i = 0;
for (i = r - 1; i >= 0; i--) {
if (indices[i] != (i + n - r + 1)) {
break;
}
}
// return null if no more combinations exist
if (i == -1)
return null;
// increment rightmost index
indices[i]++;
// reset all the indices to the right of indices[i]
// to their smallest possible value.
for (int j = i + 1; j < r; j++) {
indices[j] = indices[j-1] + 1;
}
return indices;
}
/**
* Generates all r-combinations of the indices array
*
* @heroes The array of heroes wishes
* @r The length of the combination to generate
*/
public static List<int[]> combination(List<Integer> heroes, int r) {
List<int[]> combinations = new ArrayList<int[]>();
int[] indices = initialCombination(r);
while(indices != null) {
combinations.add(indices);
indices = nextCombination(indices, heroes.size());
}
return combinations;
}
}
答案 1 :(得分:1)
首先,我的结果(Java)是最快的。 http://acm.timus.ru/rating.aspx?space=1&num=1922&lang=java
之前我没有充分利用的事实是我已经根据他们的意愿对英雄列表进行了排序。
因此,主循环只需要改为O(n)而不是O(n ^ 2)
for (int i = 1; i <= ulen; i ++)
{
if (w[0].wish <= i)
{
used[0] = true;
search(0, i, 1);
used[0] = false;
}
}