在较大的图像python OpenCv上覆盖较小的图像

时间:2012-12-28 00:26:21

标签: python opencv object-detection

您好我正在创建一个程序,用其他人的脸取代图像中的脸部。但是,我一直试图将新面孔插入原始的较大图像中。我已经研究了ROI和addWeight(需要图像大小相同),但我还没有找到一种方法在python中做到这一点。任何建议都很棒。我是opencv的新手。

我正在使用以下测试图像:

smaller_image:

enter image description here

larger_image:

enter image description here

到目前为止,这是我的代码......其他样本的混合器:

import cv2
import cv2.cv as cv
import sys
import numpy

def detect(img, cascade):
    rects = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=3, minSize=(10, 10), flags = cv.CV_HAAR_SCALE_IMAGE)
    if len(rects) == 0:
        return []
    rects[:,2:] += rects[:,:2]
    return rects

def draw_rects(img, rects, color):
    for x1, y1, x2, y2 in rects:
        cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)

if __name__ == '__main__':
    if len(sys.argv) != 2:                                         ## Check for error in usage syntax

    print "Usage : python faces.py <image_file>"

else:
    img = cv2.imread(sys.argv[1],cv2.CV_LOAD_IMAGE_COLOR)  ## Read image file

    if (img == None):                                     
        print "Could not open or find the image"
    else:
        cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
        gray = cv2.cvtColor(img, cv.CV_BGR2GRAY)
        gray = cv2.equalizeHist(gray)

        rects = detect(gray, cascade)

        ## Extract face coordinates         
        x1 = rects[0][3]
        y1 = rects[0][0]
        x2 = rects[0][4]
        y2 = rects[0][5]
        y=y2-y1
        x=x2-x1
        ## Extract face ROI
        faceROI = gray[x1:x2, y1:y2]

        ## Show face ROI
        cv2.imshow('Display face ROI', faceROI)
        small = cv2.imread("average_face.png",cv2.CV_LOAD_IMAGE_COLOR)  
        print "here"
        small=cv2.resize(small, (x, y))
        cv2.namedWindow('Display image')          ## create window for display
        cv2.imshow('Display image', small)          ## Show image in the window

        print "size of image: ", img.shape        ## print size of image
        cv2.waitKey(1000)              

8 个答案:

答案 0 :(得分:83)

实现目标的简单方法:

import cv2
s_img = cv2.imread("smaller_image.png")
l_img = cv2.imread("larger_image.jpg")
x_offset=y_offset=50
l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img

the result image

更新

我想你也想照顾alpha通道。这是一种快速而肮脏的方式:

s_img = cv2.imread("smaller_image.png", -1)

y1, y2 = y_offset, y_offset + s_img.shape[0]
x1, x2 = x_offset, x_offset + s_img.shape[1]

alpha_s = s_img[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s

for c in range(0, 3):
    l_img[y1:y2, x1:x2, c] = (alpha_s * s_img[:, :, c] +
                              alpha_l * l_img[y1:y2, x1:x2, c])

result image with alpha

答案 1 :(得分:7)

基于fireant上面的优秀答案,这里是alpha混合,但有点人性化。您可能需要交换1.0-alphaalpha,具体取决于您合并的方向(我的方式与来自Fireant&#39的答案交换)。

o* == s_img.* b* == b_img.*

for c in range(0,3):
    alpha = s_img[oy:oy+height, ox:ox+width, 3] / 255.0
    color = s_img[oy:oy+height, ox:ox+width, c] * (1.0-alpha)
    beta  = l_img[by:by+height, bx:bx+width, c] * (alpha)

    l_img[by:by+height, bx:bx+width, c] = color + beta

答案 2 :(得分:5)

使用@ fireant的想法,我编写了一个处理叠加的函数。这适用于任何位置参数(包括负位置)。

def overlay_image_alpha(img, img_overlay, pos, alpha_mask):
    """Overlay img_overlay on top of img at the position specified by
    pos and blend using alpha_mask.

    Alpha mask must contain values within the range [0, 1] and be the
    same size as img_overlay.
    """

    x, y = pos

    # Image ranges
    y1, y2 = max(0, y), min(img.shape[0], y + img_overlay.shape[0])
    x1, x2 = max(0, x), min(img.shape[1], x + img_overlay.shape[1])

    # Overlay ranges
    y1o, y2o = max(0, -y), min(img_overlay.shape[0], img.shape[0] - y)
    x1o, x2o = max(0, -x), min(img_overlay.shape[1], img.shape[1] - x)

    # Exit if nothing to do
    if y1 >= y2 or x1 >= x2 or y1o >= y2o or x1o >= x2o:
        return

    channels = img.shape[2]

    alpha = alpha_mask[y1o:y2o, x1o:x2o]
    alpha_inv = 1.0 - alpha

    for c in range(channels):
        img[y1:y2, x1:x2, c] = (alpha * img_overlay[y1o:y2o, x1o:x2o, c] +
                                alpha_inv * img[y1:y2, x1:x2, c])

用法是:

overlay_image_alpha(img_large,
                    img_small[:, :, 0:3],
                    (x, y),
                    img_small[:, :, 3] / 255.0)

答案 3 :(得分:0)

如果有人像我一样得到错误:

  

ValueError:赋值目标是只读的

尝试使用上述任何答案写入目标图像时。

快速脏修复是将WRITEABLE标志设置为true:

img.setflags(write=1)

答案 4 :(得分:0)

对于仅将Alpha通道添加到s_img,我仅在行之前使用cv2.addWeighted import csv import sys file = sys.argv[1] # name of file is example.txt columns = sys.argv[2:] # order: col1, col3, col5 n_columns=len(columns) with open(file, 'r') as csvfile: with open('table.out', 'w') as file_out: for i in range(0,n_columns): file_out.write(columns[i] + '\t') file_out.write('\n') reader = csv.DictReader(csvfile) for row in reader: for i in range(0,n_columns): file_out.write(row[columns[i]] + '\t') file_out.write('\n')

如下:
l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img

答案 5 :(得分:0)

这里是:

def put4ChannelImageOn4ChannelImage(back, fore, x, y):
    rows, cols, channels = fore.shape    
    trans_indices = fore[...,3] != 0 # Where not transparent
    overlay_copy = back[y:y+rows, x:x+cols] 
    overlay_copy[trans_indices] = fore[trans_indices]
    back[y:y+rows, x:x+cols] = overlay_copy

#test
background = np.zeros((1000, 1000, 4), np.uint8)
background[:] = (127, 127, 127, 1)
overlay = cv2.imread('imagee.png', cv2.IMREAD_UNCHANGED)
put4ChannelImageOn4ChannelImage(background, overlay, 5, 5)

答案 6 :(得分:0)

一个简单的4on4粘贴功能可以正常工作-

def paste(background,foreground,pos=(0,0)):
    #get position and crop pasting area if needed
    x = pos[0]
    y = pos[1]
    bgWidth = background.shape[0]
    bgHeight = background.shape[1]
    frWidth = foreground.shape[0]
    frHeight = foreground.shape[1]
    width = bgWidth-x
    height = bgHeight-y
    if frWidth<width:
        width = frWidth
    if frHeight<height:
        height = frHeight
    # normalize alpha channels from 0-255 to 0-1
    alpha_background = background[x:x+width,y:y+height,3] / 255.0
    alpha_foreground = foreground[:width,:height,3] / 255.0
    # set adjusted colors
    for color in range(0, 3):
        fr = alpha_foreground * foreground[:width,:height,color]
        bg = alpha_background * background[x:x+width,y:y+height,color] * (1 - alpha_foreground)
        background[x:x+width,y:y+height,color] = fr+bg
    # set adjusted alpha and denormalize back to 0-255
    background[x:x+width,y:y+height,3] = (1 - (1 - alpha_foreground) * (1 - alpha_background)) * 255
    return background

答案 7 :(得分:0)

一个简单的函数,将图像front复制到图像back上并返回结果。它适用于3通道和4通道图像,并处理alpha通道。重叠也得到处理。

输出图像的大小与背面相同,但始终为4通道。
输出的Alpha通道由(u + v)/(1 + uv)给出,其中u,v是正面和背面图像的Alpha通道,并且-1 <= u,v <= 1。前面,则取后面的alpha值。

import cv2

def merge_image(back, front, x,y):
    # convert to rgba
    if back.shape[2] == 3:
        back = cv2.cvtColor(back, cv2.COLOR_BGR2BGRA)
    if front.shape[2] == 3:
        front = cv2.cvtColor(front, cv2.COLOR_BGR2BGRA)

    # crop the overlay from both images
    bh,bw = back.shape[:2]
    fh,fw = front.shape[:2]
    x1, x2 = max(x, 0), min(x+fw, bw)
    y1, y2 = max(y, 0), min(y+fh, bh)
    front_cropped = front[y1-y:y2-y, x1-x:x2-x]
    back_cropped = back[y1:y2, x1:x2]

    alpha_front = front_cropped[:,:,3:4] / 255
    alpha_back = back_cropped[:,:,3:4] / 255
    
    # replace an area in result with overlay
    result = back.copy()
    print(f'af: {alpha_front.shape}\nab: {alpha_back.shape}\nfront_cropped: {front_cropped.shape}\nback_cropped: {back_cropped.shape}')
    result[y1:y2, x1:x2, :3] = alpha_front * front_cropped[:,:,:3] + alpha_back * back_cropped[:,:,:3]
    result[y1:y2, x1:x2, 3:4] = (alpha_front + alpha_back) / (1 + alpha_front*alpha_back) * 255

    return result