我尝试通过apply_async将共享计数器传递给多处理中的任务,但它失败并出现此类错误“RuntimeError:只应通过继承在进程之间共享同步对象”。发生了什么
def processLine(lines, counter, mutex):
pass
counter = multiprocessing.Value('i', 0)
mutex = multiprocessing.Lock()
pool = Pool(processes = 8)
lines = []
for line in inputStream:
lines.append(line)
if len(lines) >= 5000:
#don't queue more than 1'000'000 lines
while counter.value > 1000000:
time.sleep(0.05)
mutex.acquire()
counter.value += len(lines)
mutex.release()
pool.apply_async(processLine, args=(lines, counter, ), callback = collectResults)
lines = []
答案 0 :(得分:2)
让池处理调度:
for result in pool.imap(process_single_line, input_stream):
pass
如果订单无关紧要:
for result in pool.imap_unordered(process_single_line, input_stream):
pass
pool.*map*()
函数有chunksize
个参数,您可以更改它以查看它是否会影响您的工作效果。
如果您的代码需要在一次调用中传递多行:
from itertools import izip_longest
chunks = izip_longest(*[iter(inputStream)]*5000, fillvalue='') # grouper recipe
for result in pool.imap(process_lines, chunks):
pass
限制排队项目数量的一些替代方案是:
multiprocessing.Queue
(在这种情况下您不需要池)。 queue.put()
会在达到最大值时阻止,直到其他进程调用queue.get()
注意:每个Value都有关联的锁,你不需要单独的锁。
答案 1 :(得分:0)
我用这种不优雅的方式解决了它
def processLine(lines):
pass
def collectResults(result):
global counter
counter -= len(result)
counter = 0
pool = Pool(processes = 8)
lines = []
for line in inputStream:
lines.append(line)
if len(lines) >= 5000:
#don't queue more than 1'000'000 lines
while counter.value > 1000000:
time.sleep(0.05)
counter.value += len(lines)
pool.apply_async(processLine, args=(lines), callback = collectResults)
lines = []