我搜索了很多,但没有找到任何问题的解决方案,请你帮助我进行矢量化(或者只是一种方法来加快速度)这些循环?
% n is the size of C
h = 1/(n-1)
dt = 1e-6;
a = 1e-2;
F=zeros(n,n);
F2=zeros(n,n);
C2=zeros(n,n);
t = 0.0;
for iter=1:12000
F2=F.^3-F;
for i=1:n
for j=1:n
F2(i,j)=F2(i,j)-(C(ij(i-1),j)+C(ij(i+1),j)+C(i,ij(j-1))+C(i,ij(j+1))-4*C(i,j)).*(a.^2)./(h.^2);
end
end
F=F2;
for i=1:n
for j=1:n
C2(i,j)=C(i,j)+(F(ij(i-1),j)+F(ij(i+1),j)+F(i,ij(j-1))+F(i,ij(j+1))-4*F(i,j)).*dt./(h^2);
end
end
C=C2;
t = t + dt;
end
function i=ij(i) %Just to have a matrix as loop (the n+1 th cases are the 1 th and 0 the 0th are nth)
if i==0
i=n;
return
elseif i==n+1
i=1;
end
return
end
非常感谢
编辑:找到答案,这完全是荒谬的,而且我的搜索方式太过分了%n is still the size of C
h = 1/((n-1))
dt = 1e-6;
a = 1e-2;
F=zeros(n,n);
var1=(a^2)/(h^2); %to make a bit less calculus
var2=dt/(h^2); % the same
t = 0.0;
for iter=1:12000
F=C.^3-C-var1*(C([n 1:n-1],1:n) + C([2:n 1], 1:n) + C(1:n, [n 1:n-1]) + C(1:n, [2:n 1]) - 4*C);
C = C + var2*(F([n 1:n-1], 1:n) + F([2:n 1], 1:n) + F(1:n, [n 1:n-1]) + F(1:n,[2:n 1]) - 4*F);
t = t + dt;
end
答案 0 :(得分:1)
找到答案,这完全是荒谬的,而且我的搜索方式太过分了
%n is still the size of C
h = 1/((n-1))
dt = 1e-6;
a = 1e-2;
F=zeros(n,n);
var1=(a^2)/(h^2); %to make a bit less calculus
var2=dt/(h^2); % the same
prev = [n 1:n-1];
next = [2:n 1];
t = 0.0;
for iter=1:12000
F = C.*C.*C - C - var1*(C(:,next)+C(:,prev)+C(next,:)+C(prev,:)-4*C);
C = C + var2*(F(:,next)+F(:,prev)+F(next,:)+F(prev,:)-4*F);
t = t + dt;
end
答案 1 :(得分:0)
内循环的行为看起来像二维循环卷积。这与FFT域中的乘法相同。减法在线性运算(如FFT)中是不变的。
您需要使用fft2
和ifft2
函数。
一旦你这样做,我想你会发现通过将卷积核(元素方式)提升到幂iter
可以消除重复卷积。如果这种优化是正确的,我预测加速会达到5个数量级。
答案 2 :(得分:0)
您可以使用C(ij(i-1),j)
或circshift(C,[1,0])
代替circshift(C,[1,0])
(我无法确定两个中的一个是正确的)