我想将椭圆曲线分解算法的生日悖论延续添加到我的collection因子分解程序中。 Brent描述了two papers中的算法,Montgomery也算describes算法,我正在尝试根据Bosma和Lenstra详细的description来实现算法。以下是我到目前为止在Python中的内容,您可以在ideone.com/vMXSab运行:
# lenstra's algorithm per bosma/lenstra
from random import randint
from fractions import gcd
def primes(n):
b, p, ps = [True] * (n+1), 2, []
for p in xrange(2, n+1):
if b[p]:
ps.append(p)
for i in xrange(p, n+1, p):
b[i] = False
return ps
def bezout(a, b):
if b == 0: return 1, 0, a
q, r = divmod(a, b)
x, y, g = bezout(b, r)
return y, x-q*y, g
def add(p, q, a, b, m):
if p[2] == 0: return q
if q[2] == 0: return p
if p[0] == q[0]:
if (p[1] + q[1]) % m == 0:
return 0, 1, 0 # infinity
n = (3 * p[0] * p[0] + a) % m
d = (2 * p[1]) % m
else:
n = (q[1] - p[1]) % m
d = (q[0] - p[0]) % m
x, y, g = bezout(d, m)
if g > 1: return 0, 0, d # failure
z = (n*x*n*x - p[0] - q[0]) % m
return z, (n * x * (p[0] - z) - p[1]) % m, 1
def mul(k, p, a, b, m):
r = (0,1,0)
while k > 0:
if k % 2 == 1:
r = add(p, r, a, b, m)
if r[2] > 1: return r
k = k // 2
p = add(p, p, a, b, m)
if p[2] > 1: return p
return r
def lenstra1(n, limit):
g = n
while g == n:
q = randint(0, n-1), randint(0, n-1), 1
a = randint(0, n-1)
b = (q[1]*q[1] - q[0]*q[0]*q[0] - a*q[0]) % n
g = gcd(4*a*a*a + 27*b*b, n)
if g > 1: return 0, g # lucky factor
for p in primes(limit):
pp = p
while pp < limit:
q = mul(p, q, a, b, n)
if q[2] > 1:
return 1, gcd(q[2], n)
pp = p * pp
return False
def parms(b1):
b2 = 10 * b1
er = [(1,31), (2,63), (3,127), (6,255), (12,511), \
(18,511), (24,1023), (30,1023), (60,2047)]
prev = 1,31
for (e, r) in er:
if e*e > b1/1250: break
prev = e, r
e, r = prev
rBar = int(round(b2/r))
u = randint(0, pow(2,30)//(e+2))
v = randint(0, pow(2,30)//(e+2))
uBar = randint(0, pow(2,30)//(e+2))
vBar = randint(0, pow(2,30)//(e+2))
return b2, e, r, rBar, u, v, uBar, vBar
def lenstra2(n, b1):
g = n
while g == n:
q = randint(0, n-1), randint(0, n-1), 1
a = randint(0, n-1)
b = (q[1]*q[1] - q[0]*q[0]*q[0] - a*q[0]) % n
g = gcd(4*a*a*a + 27*b*b, n)
if g > 1: return 0, g # lucky factor
for p in primes(b1):
pp = p
while pp < b1:
q = mul(p, q, a, b, n)
if q[2] > 1: return 1, gcd(q[2], n)
pp = p * pp
b2, e, r, rBar, u, v, uBar, vBar = parms(b1)
f = [1] * (r+1)
for i in range(1, r):
p = mul(pow(u*i+v,e), q, a, b, n)
if p[2] > 1: return 2, gcd(p[2], n)
f[i] = (f[i-1] * (q[0] - p[0])) % n
d = 1
for j in range(1, rBar):
pBar = mul(pow(uBar*j+vBar,e), q, a, b, n)
if pBar[2] > 1: return 3, gcd(pBar[2], n)
t = 0
for i in range(0, r):
t = (t + p[0] * f[i]) % n
d = (d * t) % n
g = gcd(d, n)
if 1 < g < n: return 4, g
return False
primes
函数实现了Eratosthenes的Sieve的简单版本,返回小于 n 的素数列表,bezout
函数实现了扩展的Euclidean算法,返回 a 的倒数, b 的倒数,以及它们最大的公约数。椭圆算术由add
和mul
函数给出; add返回一个“点”(0,0, d )来表示不可逆分母,mul
传播它,并且在因子分解函数中使用mul
必须检查它每次调用mul
时。函数lenstra1
是一个简单的椭圆曲线分解的单阶段版本,并且工作正常。
函数lenstra2
及其辅助函数parms
是我尝试实现上面引用的Bosma / Lenstra paper中给出的算法。我首先尝试使用基本版本,如第6.1节所述,而不考虑第6.4和6.7节中的优化。我认为parms
中的计算是正确的。函数运行,但始终返回False
,表示它没有找到因子,或者在完成算法并从最终gcd
计算返回之前,在椭圆运算的早期中断后返回。我认为问题在于计算 f 的系数,以及使用 f 来计算 d 。
所以我的问题:
非常感谢。