iOS:从背景图像中检索矩形图像

时间:2012-12-19 18:00:29

标签: ios opencv

我正在开发一个实现,我在大背景图像中有一个矩形图像。我试图以编程方式从大图像中检索矩形图像,并从该特定矩形图像中检索文本信息。我正在尝试使用Open-CV第三方框架,但无法从大背景图像中检索矩形图像。有人可以指导我,我怎么能做到这一点?

更新:

我找到Link来找出使用OpenCV的方形形状。我可以修改它以找到矩形形状吗?有人可以指导我吗?

最新消息:

我最后得到了代码,下面是它。

    - (cv::Mat)cvMatWithImage:(UIImage *)image
{
    CGColorSpaceRef colorSpace = CGImageGetColorSpace(image.CGImage);
    CGFloat cols = image.size.width;
    CGFloat rows = image.size.height;

    cv::Mat cvMat(rows, cols, CV_8UC4); // 8 bits per component, 4 channels

    CGContextRef contextRef = CGBitmapContextCreate(cvMat.data,                 // Pointer to backing data
                                                    cols,                       // Width of bitmap
                                                    rows,                       // Height of bitmap
                                                    8,                          // Bits per component
                                                    cvMat.step[0],              // Bytes per row
                                                    colorSpace,                 // Colorspace
                                                    kCGImageAlphaNoneSkipLast |
                                                    kCGBitmapByteOrderDefault); // Bitmap info flags

    CGContextDrawImage(contextRef, CGRectMake(0, 0, cols, rows), image.CGImage);
    CGContextRelease(contextRef);

    return cvMat;
}
-(UIImage *)UIImageFromCVMat:(cv::Mat)cvMat
{
    NSData *data = [NSData dataWithBytes:cvMat.data length:cvMat.elemSize()*cvMat.total()];
    CGColorSpaceRef colorSpace;
    if ( cvMat.elemSize() == 1 ) {
        colorSpace = CGColorSpaceCreateDeviceGray();
    }
    else {
        colorSpace = CGColorSpaceCreateDeviceRGB();
    }

    //CFDataRef data;
    CGDataProviderRef provider = CGDataProviderCreateWithCFData( (CFDataRef) data ); // It SHOULD BE (__bridge CFDataRef)data
    CGImageRef imageRef = CGImageCreate( cvMat.cols, cvMat.rows, 8, 8 * cvMat.elemSize(), cvMat.step[0], colorSpace, kCGImageAlphaNone|kCGBitmapByteOrderDefault, provider, NULL, false, kCGRenderingIntentDefault );
    UIImage *finalImage = [UIImage imageWithCGImage:imageRef];
    CGImageRelease( imageRef );
    CGDataProviderRelease( provider );
    CGColorSpaceRelease( colorSpace );
    return finalImage;
}
-(void)forOpenCV
{
    imageView = [UIImage imageNamed:@"myimage.jpg"];
    if( imageView != nil )
    {
        cv::Mat tempMat = [imageView CVMat];

        cv::Mat greyMat = [self cvMatWithImage:imageView];
        cv::vector<cv::vector<cv::Point> > squares;

        cv::Mat img= [self debugSquares: squares: greyMat];

        imageView = [self UIImageFromCVMat: img];

        self.imageView.image = imageView;
    }
}

double angle( cv::Point pt1, cv::Point pt2, cv::Point pt0 ) {
    double dx1 = pt1.x - pt0.x;
    double dy1 = pt1.y - pt0.y;
    double dx2 = pt2.x - pt0.x;
    double dy2 = pt2.y - pt0.y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

- (cv::Mat) debugSquares: (std::vector<std::vector<cv::Point> >) squares : (cv::Mat &)image
{
    NSLog(@"%lu",squares.size());

    // blur will enhance edge detection

    //cv::Mat blurred(image);
    cv::Mat blurred = image.clone();
    medianBlur(image, blurred, 9);

    cv::Mat gray0(image.size(), CV_8U), gray;
    cv::vector<cv::vector<cv::Point> > contours;

    // find squares in every color plane of the image
    for (int c = 0; c < 3; c++)
    {
        int ch[] = {c, 0};
        mixChannels(&image, 1, &gray0, 1, ch, 1);

        // try several threshold levels
        const int threshold_level = 2;
        for (int l = 0; l < threshold_level; l++)
        {
            // Use Canny instead of zero threshold level!
            // Canny helps to catch squares with gradient shading
            if (l == 0)
            {
                Canny(gray0, gray, 10, 20, 3); //

                // Dilate helps to remove potential holes between edge segments
                dilate(gray, gray, cv::Mat(), cv::Point(-1,-1));
            }
            else
            {
                gray = gray0 >= (l+1) * 255 / threshold_level;
            }

            // Find contours and store them in a list
            findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);

            // Test contours
            cv::vector<cv::Point> approx;
            for (size_t i = 0; i < contours.size(); i++)
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                approxPolyDP(cv::Mat(contours[i]), approx, arcLength(cv::Mat(contours[i]), true)*0.02, true);

                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if (approx.size() == 4 &&
                    fabs(contourArea(cv::Mat(approx))) > 1000 &&
                    isContourConvex(cv::Mat(approx)))
                {
                    double maxCosine = 0;

                    for (int j = 2; j < 5; j++)
                    {
                        double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
                        maxCosine = MAX(maxCosine, cosine);
                    }

                    if (maxCosine < 0.3)
                        squares.push_back(approx);
                }
            }
        }
    }

    NSLog(@"squares.size(): %lu",squares.size());


    for( size_t i = 0; i < squares.size(); i++ )
    {
        cv::Rect rectangle = boundingRect(cv::Mat(squares[i]));
        NSLog(@"rectangle.x: %d", rectangle.x);
        NSLog(@"rectangle.y: %d", rectangle.y);

        if(i==squares.size()-1)////Detecting Rectangle here
        {
            const cv::Point* p = &squares[i][0];

            int n = (int)squares[i].size();

            NSLog(@"%d",n);

            line(image, cv::Point(507,418), cv::Point(507+1776,418+1372), cv::Scalar(255,0,0),2,8);

            polylines(image, &p, &n, 1, true, cv::Scalar(255,255,0), 5, CV_AA);

            int fx1=rectangle.x;
                NSLog(@"X: %d", fx1);
            int fy1=rectangle.y;
                NSLog(@"Y: %d", fy1);
            int fx2=rectangle.x+rectangle.width;
                NSLog(@"Width: %d", fx2);
            int fy2=rectangle.y+rectangle.height;
                NSLog(@"Height: %d", fy2);

            line(image, cv::Point(fx1,fy1), cv::Point(fx2,fy2), cv::Scalar(0,0,255),2,8);

        }

    }

    return image;
}

谢谢。

2 个答案:

答案 0 :(得分:6)

这是一个完整的答案,使用一个小的包装类将c ++与objective-c代码分开。

我不得不raise another question on stackoverflow处理我糟糕的c ++知识 - 但是我已经找到了使用{{1}将c ++ 干净地与objective-c代码连接起来所需的一切示例代码作为示例。目的是保持原始c ++代码尽可能保持原始状态,并将openCV的大部分工作保留在纯c ++文件中以实现(im)可移植性。

我已将原来的答案留在原处,因为这似乎超出了编辑范围。 The complete demo project is on github

CVViewController.h / CVViewController.m

  • 纯Objective-C

  • 通过WRAPPER与openCV c ++代码进行通信......它既不知道也不关心c ++正在处理包装器后面的这些方法调用。

CVWrapper.h / CVWrapper.mm

  • 目标-C ++

尽可能少,真的只有两件事......

  • 调用UIImage objC ++类别以转换为UIImage和来自UIImage&lt;&gt; CV ::垫
  • 介于CVViewController的obj-C方法和CVSquares c ++(类)函数调用之间

CVSquares.h / CVSquares.cpp

  • 纯C ++
  • squares.cpp在类定义中声明公共函数(在本例中为一个静态函数) 这取代了原始文件中CVSquares.cpp的工作。
  • 我们尽量使main{}尽可能接近C ++原文以便于移植。

CVViewController.m

CVSquares.cpp

<强> CVSquaresWrapper.h

//remove 'magic numbers' from original C++ source so we can manipulate them from obj-C
#define TOLERANCE 0.01
#define THRESHOLD 50
#define LEVELS 9

UIImage* image =
        [CVSquaresWrapper detectedSquaresInImage:self.image
                                       tolerance:TOLERANCE
                                       threshold:THRESHOLD
                                          levels:LEVELS];

CVSquaresWrapper.mm

//  CVSquaresWrapper.h

#import <Foundation/Foundation.h>

@interface CVSquaresWrapper : NSObject

+ (UIImage*) detectedSquaresInImage:(UIImage*)image
                          tolerance:(CGFloat)tolerance
                          threshold:(NSInteger)threshold
                             levels:(NSInteger)levels;

@end

<强> CVSquares.h

//  CVSquaresWrapper.mm
//  wrapper that talks to c++ and to obj-c classes

#import "CVSquaresWrapper.h"
#import "CVSquares.h"
#import "UIImage+OpenCV.h"

@implementation CVSquaresWrapper

+ (UIImage*) detectedSquaresInImage:(UIImage*) image
                          tolerance:(CGFloat)tolerance
                          threshold:(NSInteger)threshold
                             levels:(NSInteger)levels
{
    UIImage* result = nil;

        //convert from UIImage to cv::Mat openCV image format
        //this is a category on UIImage
    cv::Mat matImage = [image CVMat]; 


        //call the c++ class static member function
        //we want this function signature to exactly 
        //mirror the form of the calling method 
    matImage = CVSquares::detectedSquaresInImage (matImage, tolerance, threshold, levels);


        //convert back from cv::Mat openCV image format
        //to UIImage image format (category on UIImage)
    result = [UIImage imageFromCVMat:matImage]; 

    return result;
}

@end

<强> CVSquares.cpp

//  CVSquares.h

#ifndef __OpenCVClient__CVSquares__
#define __OpenCVClient__CVSquares__

    //class definition
    //in this example we do not need a class 
    //as we have no instance variables and just one static function. 
    //We could instead just declare the function but this form seems clearer

class CVSquares
{
public:
    static cv::Mat detectedSquaresInImage (cv::Mat image, float tol, int threshold, int levels);
};

#endif /* defined(__OpenCVClient__CVSquares__) */

UIImage + OpenCV.h

UIImage类是一个objC ++文件,其中包含在UIImage和cv :: Mat图像格式之间进行转换的代码。您可以在此处移动两种方法// CVSquares.cpp #include "CVSquares.h" using namespace std; using namespace cv; static int thresh = 50, N = 11; static float tolerance = 0.01; //declarations added so that we can move our //public function to the top of the file static void findSquares( const Mat& image, vector<vector<Point> >& squares ); static void drawSquares( Mat& image, vector<vector<Point> >& squares ); //this public function performs the role of //main{} in the original file (main{} is deleted) cv::Mat CVSquares::detectedSquaresInImage (cv::Mat image, float tol, int threshold, int levels) { vector<vector<Point> > squares; if( image.empty() ) { cout << "Couldn't load " << endl; } tolerance = tol; thresh = threshold; N = levels; findSquares(image, squares); drawSquares(image, squares); return image; } // the rest of this file is identical to the original squares.cpp except: // main{} is removed // this line is removed from drawSquares: // imshow(wndname, image); // (obj-c will do the drawing) -(UIImage *)UIImageFromCVMat:(cv::Mat)cvMat

- (cv::Mat)cvMatWithImage:(UIImage *)image

此处的方法实现与您的代码相同(尽管我们没有传递UIImage进行转换,而是引用//UIImage+OpenCV.h #import <UIKit/UIKit.h> @interface UIImage (UIImage_OpenCV) //cv::Mat to UIImage + (UIImage *)imageFromCVMat:(cv::Mat&)cvMat; //UIImage to cv::Mat - (cv::Mat)CVMat; @end

答案 1 :(得分:2)

这是部分答案。这是不完整的,因为我试图做同样的事情,并在每一步中遇到巨大的困难。我的知识在objective-c上非常强大,但在C ++上却很弱

您应该阅读this guide to wrapping c++

在Ievgen Khvedchenia的Computer Vision Talks博客上,

以及所有,尤其是openCV tutorial。 Ievgen还在github上发布了amazingly complete project以配合教程。

话虽如此,我仍然having a lot of trouble让openCV编译并顺利运行。

例如,Ievgen的教程作为一个完成的项目运行良好,但如果我尝试从头开始重新创建它,我会得到同样一直困扰着我的openCV编译错误。这可能是我对C ++的不了解,也是与obj-C的集成。

关于squares.cpp

你需要做什么

  • 从squares.cpp
  • 中删除int main(int /*argc*/, char** /*argv*/)
  • 从drawSquares中移除imshow(wndname, image);(obj-c将执行绘图)
  • 创建一个头文件squares.h
  • 在头文件中创建一个或两个公共函数,您可以从obj-c(或从obj-c / c ++包装器)调用

这是我到目前为止所拥有的......

class squares
{
public:
         static cv::Mat& findSquares( const cv::Mat& image, cv::vector<cv::vector<cv::Point> >& squares );
         static cv::Mat& drawSquares( cv::Mat& image, const cv::vector<cv::vector<cv::Point> >& squares );

};

您应该能够将此减少为单个方法,例如processSquares,其中一个输入cv::Mat& image,一个返回cv::Mat& image。该方法将声明squares并在.cpp文件中调用findSquaresdrawSquares

包装器将获取输入UIImage,将其转换为cv::Mat image,使用该输入调用processSquares,并获得结果cv::Mat image。结果它将转换回NSImage并传回objc调用函数。

这是我们需要做的一个简洁的草图,一旦我真的设法任何一个,我会尝试扩展这个答案!