四边形形状发现算法

时间:2012-12-19 11:06:11

标签: c# algorithm image-processing opencv artificial-intelligence

我想从随机定位的线段中检测并完成所有可能的四边形形状!

附带的照片就是一个例子,这些线条可能总是出现在非常不同的位置。

任何人都可以为此指出任何好的算法吗?

  • 请注意,线段是使用opencv 2.4.2
  • 的Hough变换的输出

enter image description here

解决方案是检测预测黄色四边形

enter image description here

5 个答案:

答案 0 :(得分:41)

对于11个线段,您有330种选择四个线段的方法。您可以确定每个组合制作四边形的可能性,并按此方式评分。

可以使用Hough变换检测除线以外的形式,但由于累加器空间需要两个以上的维度,因此变得更难以可视化。圆可以在三个维度中找到(midX,midY,radius),四个椭圆(我相信)。我不确定你需要多少参数来建模四边形,我相信当你得到高于三维时,霍夫变换的性能开始下降。蓄电池空间变得很大,噪声比显着增加。

这是related question,可能会为您提供一些有趣的答案。

告诉我们你是如何上场的!


修改

我今天抓住了这个问题,uploaded my solution to GitHub。这里发布的代码太多了。

以下是显示输出的屏幕截图:

我采取的解决方案基本上就是我在编辑之前所描述的内容。

  1. 查找四行的所有组合
  2. 查找这四行的所有排列
  3. 评估这四条线形成四边形的可能性
  4. 参加最佳比赛
  5. 评估通过计算粗略错误分数来进行。这是两种不同类型错误的总和:

    1. 每个角落的偏差为90度(我使用所有四个角的误差平方和)
    2. 当线段在线段内相交时,它可能不是有效的角落
    3. 第二种类型的错误可能以更健壮的方式确定。有必要为您的样本数据集找到解决方案。

      我没有尝试过其他数据集。可能需要进行一些调整才能使其更加健壮。我试图避免使用太多参数,以便可以直接调整到特定环境。例如,控制对遮挡的敏感度,如样本图像中所示。

      它在我的笔记本电脑上找到了大约160毫秒的解决方案。但是我没有进行任何性能优化。我希望找到组合/排列的方法可以显着优化,如果你需要这种方法更接近实时,就像计算机视觉实验一样。

答案 1 :(得分:19)

如果不对角度等施加约束,可以完成任意四条线以形成四边形。

图像可能存在错误的四边形: enter image description here

可能你不想包括像我的例子中所示的黄色四边形。您应该对角度,最小/最大尺寸,纵横比和允许的完成程度有约束。如果必须添加90%的线以形成完整的四边形,这可能不是一个非常好的候选者。

我担心你必须测试每一种可能的线条组合并对它们应用heuristic来给它们分数。角度接近90度的许多点(如果你想要的是矩形),为了完整性,长宽比接近预期的等等。


<强>更新

使用积分系统优于仅应用严格规则。

  • 点数系统允许您评估四边形的质量并采用最佳的四边形或完全拒绝四边形。
  • 一个物业的优质品质有助于超越另一物业的劣质。
  • 它允许您为不同的属性赋予不同的权重。

假设你有一个严格的规则(伪代码):

(angles == 90 +/- 10 degrees) && (line_completeness>50%)

这样可行,但可能导致像angles == 90 +/- 1 degree) && (line_completeness == 45%)这样的情况。根据规则,由于线路完整性差,这个四边形不会通过;然而,角度的质量是特殊的,仍然使它成为一个非常好的候选人。

最好给点。对于90度正好的角度说20点,对于90 +/- 15度的角度下降到0点,对于完整线10点,朝向0点,例如线仅完成25%。这使得角度比线条完整性更重要,并且还为没有绝对规则的问题创造了更柔和的条件。

答案 2 :(得分:3)

我不使用C#,因此您必须翻译代码。以下代码使用Java。我用附带的测试用例测试了它。我还不知道如何向stackoverflow添加附件,所以我在这里包含了实际的代码。

有四个类(ShapeFinder,Line,Point和Quadrilateral)和一个测试类(ShapeFinderTest):

ShapeFinder类:

package stackoverflow;

import java.util.ArrayList;
import java.util.List;

public class ShapeFinder {

  private List<Line> lines;
  private List<Quadrilateral> allQuadrilaterals;

  /*
   * I am assuming your segments are in a list of arrays:
   * [{{x1,y1,},{x2,y2}}, {{x1,y1,},{x2,y2}}, {{x1,y1,},{x2,y2}}]
   * You can change this.
   *
   * So basically you call ShapeFinder with a list of your line segments.
   */
  public ShapeFinder(List<Double[][]> allSegments) {
    lines = new ArrayList<Line>(allSegments.size());
    allQuadrilaterals = new ArrayList<Quadrilateral>();
    for (Double[][] segment : allSegments) {
      addSlopeInterceptForm(segment);
    }
  }

  /**
   * You call this function to compute all possible quadrilaterals for you.
   */
  public List<Quadrilateral> completeQuadrilaterals() {
    for (int w = 0; w < lines.size(); w++) {
      for (int x = w + 1; x < lines.size(); x++) {
        for (int y = x + 1; y < lines.size(); y++) {
          for (int z = y + 1; z < lines.size(); z++) {
            addQuadrilateral(w, x, y, z);
          }
        }
      }
    }
    return allQuadrilaterals;
  }

  //assume {{x1,y1,},{x2,y2}}
  private void addSlopeInterceptForm(Double[][] s) {
    double x1 = s[0][0];
    double y1 = s[0][1];
    double x2 = s[1][0];
    double y2 = s[1][1];
    double m = (y1 - y2) / (x1 - x2);
    double b = y2 - m * x2;

    if (isInfinityOrNaN(m)) {
      m = Double.NaN;
      b = x1;
    }

    lines.add(new Line(m, b));
  }

  /*
   * Given four lines, this function creates a quadrilateral if possible
   */
  private void addQuadrilateral(int w, int x, int y, int z) {
    Point wx = intersect(w, x);
    Point wy = intersect(w, y);
    Point wz = intersect(w, z);
    Point xy = intersect(x, y);
    Point xz = intersect(x, z);
    Point yz = intersect(y, z);

    if (notNull(wx) && notNull(xy) && notNull(yz) && notNull(wz) && isNull(wy) && isNull(xz)) {
      allQuadrilaterals.add(new Quadrilateral(wx, xy, yz, wz));
    }
  }

  private Point intersect(int c, int d) {
    double m1 = lines.get(c).slope;
    double b1 = lines.get(c).intercept;
    double m2 = lines.get(d).slope;
    double b2 = lines.get(d).intercept;

    double xCor, yCor;
    if ((isInfinityOrNaN(m1) && !isInfinityOrNaN(m2)) || (!isInfinityOrNaN(m1) && isInfinityOrNaN(m2))) {
      xCor = isInfinityOrNaN(m1) ? b1 : b2;
      yCor = isInfinityOrNaN(m1) ? m2 * xCor + b2 : m1 * xCor + b1;;
    } else {
      xCor = (b2 - b1) / (m1 - m2);
      yCor = m1 * xCor + b1;
    }

    if (isInfinityOrNaN(xCor) || isInfinityOrNaN(yCor)) {
      return null;
    }
    return new Point(xCor, yCor);
  }

  private boolean isInfinityOrNaN(double d){
    return Double.isInfinite(d)||Double.isNaN(d);
  }

  private boolean notNull(Point p) {
    return null != p;
  }

  private boolean isNull(Point p) {
    return null == p;
  }
}

线类:

package stackoverflow;

public class Line {

  double slope;
  double intercept;

  public Line(double slope, double intercept) {
    this.slope = slope;
    this.intercept = intercept;
  }
}

点类:

package stackoverflow;

class Point {

  double xCor;
  double yCor;

  public Point(double xCor, double yCor) {
    this.xCor = xCor;
    this.yCor = yCor;
  }

  public String toString(){
    return "("+xCor+","+yCor+")";
  }
}

四边形课程:

package stackoverflow;

public class Quadrilateral {

  private Point w, x, y, z;

  public Quadrilateral(Point w, Point x, Point y, Point z) {
    this.w = w;
    this.x = x;
    this.y = y;
    this.z = z;
  }

  public String toString() {
    return "[" + w.toString() + ", " + x.toString() + ", " + y.toString() + ", " + z.toString() + "]";
  }
}

UNIT TEST:

package stackoverflow;

import java.util.ArrayList;
import java.util.List;
import org.junit.Test;

public class ShapeFinderTest {

  @Test
  public void testCompleteQuadrilaterals() {
    List<Double[][]> lines = new ArrayList<>();
    lines.add(new Double[][]{{2., 5.}, {6., 5.}});
    lines.add(new Double[][]{{2., 1.}, {2., 5.}});
    lines.add(new Double[][]{{2., 1.}, {6., 1.}});
    lines.add(new Double[][]{{6., 5.}, {6., 1.}});
    lines.add(new Double[][]{{0., 0.}, {5., 1.}});
    lines.add(new Double[][]{{5., 5.}, {10., 25.}});
    ShapeFinder instance = new ShapeFinder(lines);
    List<Quadrilateral> result = instance.completeQuadrilaterals();

    for (Quadrilateral q : result) {
      System.out.println(q.toString());
    }
  }
}

答案 3 :(得分:2)

从示例中,我假设问题更像是查找所有四边形,其中每条边都包含一条线。从提供的解释来看,这一点并不清楚。

下面是一些相当容易实现的伪代码。现在只需创建一个有效的数据结构来防止O(N ^ 4)的复杂性。也许按位置或渐变排序。

i,j,k,l如下:

   l
 |---|
j|   |k
 |---|
   i

extendIntersect只是一个将2条线延伸到无穷大(或选择哪个边界)的函数,并返回它们相交的点,易于数学化。

如果一个点位于一条线上,

onLine将返回true。

如果两个点位于一行

的同一侧,则

onSameSide返回true

for (Line i = lines[0]:lines[lineCount])
  for (Line j = lines[1]:lines[lineCount])
    Point ijIntersect = extendIntersect(i, j)
    if (ijIntersect == NULL || onLine(ijIntersect, i) || onLine(ijIntersect, j))
      continue;
    for (Line k = lines[2]:lines[lineCount])
      Point ikIntersect = extendIntersect(i, k)
      if (ikIntersect == NULL || onLine(ikIntersect, i) || onLine(ikIntersect, k) ||
          onSameSide(ijIntersect, ikIntersect, i)) continue
      for (Line l = lines[3]:lines[lineCount])
        Point jlIntersect = extendIntersect(j, l)
        Point klIntersect = extendIntersect(k, l)
        if (jlIntersect == NULL || onLine(jlIntersect, j) || onLine(jlIntersect, l) ||
            klIntersect == NULL || onLine(klIntersect, k) || onLine(klIntersect, l) ||
            onSameSide(jlIntersect, ijIntersect, j) ||
            onSameSide(klIntersect, ikIntersect, k)) continue
        printQuad(ijIntersect, ikIntersect, klIntersect, jlIntersect)

Drew Noakes建议的某种错误检查也可能是一个好主意。

答案 4 :(得分:0)

解决方案1:
这是使用OpenCV 2.4和Sympy用python 2.7.x编写的完整解决方案。
我使用了D.Noakes的数据(线段),但是我采用了另一种方法。

问题定义:
对于一组线段,找到所有可能的四边形形状,这些线段适合四边形的内部。

方法:

  • 将线段大致分为“水平”或“垂直”。
  • 使成对的“水平”或“垂直”。
  • 过滤器对,例如如果他们接触或相交。
  • 进行两个“水平”和两个“垂直”段的组合。
  • 过滤候选四边形,例如如果角在图像外部或线段不在四边形上。

结果:
该方法可检测图像中的4个四边形形状

查看动画GIF:https://ibb.co/4Rv9rJW enter image description here

代码:https://pastiebin.com/5f3836269f7e5

#!/usr/bin/env python

"""
Find Quads:

For a set of line segments, find all the possible
quadrilateral shapes where the segments fit
inside the edges of the quad.


Dependencies:
Sympy is used for geometry primitives.
sudo pip install sympy
"""

import numpy as np
import cv2
import itertools # combinations, product
from sympy import Point, Line, Segment, convex_hull
import sys


input_image = cv2.imread("detected_lines.jpg")


#------------------------------------------------------------------------------#

def checkPointInImage(point, image_width, image_height):
    """
    Check if a Sympy Point2D is within the bounds of an OpenCV image.
    """
    pt_x = int(round(point.x))
    pt_y = int(round(point.y))
    if (pt_x >= 0) and (pt_x < image_width) and (pt_y >= 0) and (pt_y < image_height):
        return True
    # Point is outside the image boundary
    return False


def checkPointsInImage(points, image_width, image_height):
    """
    Check if a set of Sympy Point2D are all within the bounds of an OpenCV image.
    """
    for point in points:
        if not checkPointInImage(point, image_width, image_height):
            return False
    # All points are within the image boundary
    return True


def getUniquePairs(segments, image_dims):
    """
    Get all the possible pairs of line segments.
    (the unique combinations of 2 lines)
    Note: this doesn't check for duplicate elements, it works
    only on the position in the list.
    """

    # Check that a pair of segments are not intersecting
    check_segments_dont_intersect = True

    # Check that the endpoint of one segment
    # does not touch the other segment (within 10 pixels)
    check_segment_endpoints = True
    endpoint_min_separation = 10

    # Project the segments and check if the intersection
    # point is within the image
    check_projected_segments_dont_intersect = True

    pairs = list(itertools.combinations(segments, 2)) # a list of tuple

    image_width, image_height = image_dims

    filtered_pairs = []
    for pair in pairs:
        segment1 = pair[0]
        segment2 = pair[1]

        if check_segments_dont_intersect:
            if bool(len(segment1.intersection(segment2))):
                # Discard this pair.
                # The pair of segments intersect each other.
                continue

        if check_segment_endpoints or check_projected_segments_dont_intersect:
            line1 = Line(segment1)
            line2 = Line(segment2)
            intersection_points = line1.intersection(line2)
            intersects = bool(len(intersection_points))

            if intersects:
                intersection_point = intersection_points[0]

                if check_segment_endpoints:
            # Measure the distance from the endpoint of each segment
                    # to the intersection point.
                    d1 = float(segment1.points[0].distance(intersection_point))
                    d2 = float(segment1.points[1].distance(intersection_point))
                    d3 = float(segment2.points[0].distance(intersection_point))
                    d4 = float(segment2.points[1].distance(intersection_point))
                    d = np.array([d1,d2,d3,d4]) 
                    if (d < float(endpoint_min_separation)).any():
                        # Discard this pair.
                        # One segment is (almost) touching the other.
                        continue 

                if check_projected_segments_dont_intersect:
                    if checkPointInImage(intersection_point, image_width, image_height):
                        # Discard this pair.
                        # After projecting the segments as lines,
                        # they intersect somewhere on the image.
                        continue

        filtered_pairs.append(pair)

    return filtered_pairs


def getCombinationsOfTwoLists(list1, list2):
    """
    For two sets of Line Segment pairs,
    generate all possible combinations.
    """
    return list(itertools.product(list1, list2))


def getIntersectionLineSegments(segment1, segment2):
    """
    Find the intersection of two line segments,
    by extending them into infinite lines.
    """
    line1 = Line(segment1)
    line2 = Line(segment2)
    intersection_points = line1.intersection(line2)
    intersects = bool(len(intersection_points))
    if intersects:
        intersection_point = intersection_points[0]
        return intersection_point
    # Error, lines do not intersect
    print("WARNING: Horizontal and vertical line segments do not intersect.")
    print("This should not happen!")
    return None


def checkLineSegmentIsAbove(segment1, segment2):
    """
    Check if one line segment is above the other.
    (this assumes the segments are not intersecting)
    """

    # In image coordinates, (+x,+y) is bottom-right corner.
    if (segment1.points[0].y > segment2.points[0].y): return False
    if (segment1.points[0].y > segment2.points[1].y): return False
    if (segment1.points[1].y > segment2.points[0].y): return False
    if (segment1.points[1].y > segment2.points[1].y): return False

    return True


def checkLineSegmentOnLeft(segment1, segment2):
    """
    Check if one line segment is on the left side of the other.
    (this assumes the segments are not intersecting)
    """

    # In image coordinates, (+x,+y) is bottom-right corner.
    if (segment1.points[0].x > segment2.points[0].x): return False
    if (segment1.points[0].x > segment2.points[1].x): return False
    if (segment1.points[1].x > segment2.points[0].x): return False
    if (segment1.points[1].x > segment2.points[1].x): return False

    return True


def getConvexIntersectionPoints_method2(horizontal_segment1, horizontal_segment2, vertical_segment1, vertical_segment2):
    """
    For two pairs of line segments, treat them as
    infinite lines and find the intersection points.

    These 4 points are in a clockwise order that
    represents a convex quadrilateral.
    """

    # Sort the segments in clockwise order
    top_segment = None
    right_segment = None
    bottom_segment = None
    left_segment = None
    if checkLineSegmentIsAbove(horizontal_segment1, horizontal_segment2):
        top_segment = horizontal_segment1
        bottom_segment = horizontal_segment2
    else:
        top_segment = horizontal_segment2
        bottom_segment = horizontal_segment1
    if checkLineSegmentOnLeft(vertical_segment1, vertical_segment2):
        left_segment = vertical_segment1
        right_segment = vertical_segment2
    else:
        left_segment = vertical_segment2
        right_segment = vertical_segment1

    corner_pt1 = getIntersectionLineSegments(left_segment, top_segment)
    corner_pt2 = getIntersectionLineSegments(top_segment, right_segment)
    corner_pt3 = getIntersectionLineSegments(right_segment, bottom_segment)
    corner_pt4 = getIntersectionLineSegments(bottom_segment, left_segment)

    quad_points = [corner_pt1, corner_pt2, corner_pt3, corner_pt4]
    sorted_segments = [top_segment, right_segment, bottom_segment, left_segment]

    return (quad_points, sorted_segments)


def checkSegmentsOnQuad_method2(sorted_segments, corners):
    """ 
    Check if all 4 line segments are within
    the edges of a quadrilateral.

    This assumes that the inputs are already matched.
    """

    if (len(sorted_segments) != 4) or (len(corners) != 4):
       print("ERROR: Expected 4 segments and 4 corners in checkSegmentsOnQuad_method2()")
       sys.exit()

    # Get the 4 edges
    edges = []
    for i in range(3):
        p1 = corners[i]
        p2 = corners[i+1]
        edges.append(Segment(p1, p2))
    p1 = corners[3]
    p2 = corners[0]
    edges.append(Segment(p1, p2))

    for i in range(4):
        if not edges[i].contains(sorted_segments[i]):
            return False
    return True


def getQuads(sets_of_four_segments, image_dims):
    """
    Find quadrilateral shapes.
    """

    image_width, image_height = image_dims

    quads = []
    for i in range(len(sets_of_four_segments)):

        # Determine if 4 line segments represent
        # a valid quadrilateral shape:

        segments = sets_of_four_segments[i]
        horizontal_segment1 = segments[0][0]
        horizontal_segment2 = segments[0][1]
        vertical_segment1 = segments[1][0]
        vertical_segment2 = segments[1][1]

        quad_points, sorted_segments = getConvexIntersectionPoints_method2(horizontal_segment1, horizontal_segment2, vertical_segment1, vertical_segment2)

        if not checkPointsInImage(quad_points, image_width, image_height):
            print("  Bad quad, an intersection point (one corner of the quad) is outside image!")

            # Save debug image
            img = np.copy(input_image)
            drawCrosshairs(img, quad_points)
            drawQuad(img, quad_points)
            suffix = str(i).zfill(2)
            cv2.imwrite("candidate_quad_"+suffix+".jpg", img)

            # Discard this quad.
            # A corner point is outside the image boundary.
            continue

        # Check if each line segment is within one side of the quad.
        #  - The segments can not intersect each other.
        #  - The end of a segment can not extend out past the quad.
        #  - All segments must be contained within one edge of the shape.
        if checkSegmentsOnQuad_method2(sorted_segments, quad_points):
            print("  Good")
            quads.append(quad_points)
        else:
            print("  Bad quad, a line segment is not within the quad")

        # Save debug image
        img = np.copy(input_image)
        drawCrosshairs(img, quad_points)
        drawQuad(img, quad_points)
        suffix = str(i).zfill(2)
        cv2.imwrite("candidate_quad_"+suffix+".jpg", img)
        #cv2.imshow("Quad corners", img)
        #cv2.waitKey()

    return quads


#------------------------------------------------------------------------------#

# Drawing functions:


def drawSegment(image, segment, color):
    """
    Draw a Sympy Line Segment on an OpenCV image.
    """
    thickness = 2
    x1 = int(segment.points[0].x) # should already be int
    y1 = int(segment.points[0].y)
    x2 = int(segment.points[1].x)
    y2 = int(segment.points[1].y)
    cv2.line(image, (x1,y1), (x2,y2), color, thickness)


def drawSegments(image, segments, color=(0,0,255)):
    """
    Draw lines on an OpenCV image.

    Default color is red.
    """
    for segment in segments:
        drawSegment(image, segment, color)


def drawCrosshair(image, point):
    """
    Draw a Sympy Point2D on an OpenCV image
    with a cross marker.
    """
    pt_x = int(round(point.x))
    pt_y = int(round(point.y))
    length = 5
    thickness = 2
    color = (255,0,255) # magenta
    cv2.line(image, (pt_x, pt_y-length), (pt_x, pt_y+length), color, thickness)
    cv2.line(image, (pt_x-length, pt_y), (pt_x+length, pt_y), color, thickness)


def drawCrosshairs(image, points):
    """
    Draw marks on an OpenCV image.
    """
    for point in points:
        drawCrosshair(image, point)


def drawQuad(image, corners, color=(0,255,0)):
    """
    Draw a quadrilateral shape.
    The 4 corner points are Sympy Point2D.
    """
    for i in range(len(corners)-1):
        p1 = corners[i]
        p2 = corners[i+1]
        segment = Segment(p1, p2)
        drawSegment(image, segment, color)
    # Close the polygon
    p1 = corners[len(corners)-1]
    p2 = corners[0]
    segment = Segment(p1, p2)
    drawSegment(image, segment, color)


#------------------------------------------------------------------------------#


if input_image == None:
    print("ERROR: Can't find input image")
    sys.exit()

#cv2.imshow("input_image", input_image)
#cv2.waitKey()


# Line segments sample data
segment1  = Segment(Point(335,120), Point(517,144))
segment2  = Segment(Point(287, 604), Point(558, 619))
segment3  = Segment(Point(323, 131), Point(275, 587))
segment4  = Segment(Point(589, 473), Point(580, 606))
segment5  = Segment(Point(368, 39), Point(489, 108))
segment6  = Segment(Point(53, 286), Point(293, 406))
segment7  = Segment(Point(299, 347), Point(214, 538))
segment8  = Segment(Point(200, 370), Point(149, 528))
segment9  = Segment(Point(6, 446), Point(68, 449))
segment10 = Segment(Point(66, 444), Point(150, 525))
segment11 = Segment(Point(389, 514), Point(518, 644))
segments = [segment1, segment2, segment3, segment4, segment5, segment6, segment7, segment8, segment9, segment10, segment11]


image_width = input_image.shape[1]
image_height = input_image.shape[0]
image_dims = (image_width, image_height)


input_image_with_segments = np.copy(input_image)
drawSegments(input_image_with_segments, segments)
cv2.imshow("input_image_with_segments", input_image_with_segments)
cv2.waitKey()


# Sort the line segments into 2 groups:
horizontal_segments = []
vertical_segments   = []
image_width = input_image.shape[1]
x_axis = Line((0, 0), (image_width, 0))
for segment in segments:
    # Compute the angle of each line segment.
    # Angle is w.r.t. the top edge of the image
    # in a clockwise direction.
    angle = float(x_axis.angle_between(segment))

    # Check 315 to 360 degrees
    if (angle >= 2.0*np.pi-np.pi/4.0) and (angle <= 2.0*np.pi):
        horizontal_segments.append(segment)
    # Check 0 to 45 degrees
    elif (angle >= 0.0) and (angle < np.pi/4.0):
        horizontal_segments.append(segment)
    # Check 135 to 225 degrees
    elif (angle > np.pi-np.pi/4.0) and (angle < np.pi+np.pi/4.0):
        horizontal_segments.append(segment)
    else:
        vertical_segments.append(segment)


# Save debug images
input_image_with_horizontal_segments = np.copy(input_image)
drawSegments(input_image_with_horizontal_segments, horizontal_segments)
cv2.imwrite("segments_horizontal.jpg", input_image_with_horizontal_segments)
input_image_with_vertical_segments = np.copy(input_image)
drawSegments(input_image_with_vertical_segments, vertical_segments)
cv2.imwrite("segments_vertical.jpg", input_image_with_vertical_segments)


# Get all the possible pairs of horizontal line segments:
pairs_of_horizontal_line_segments = getUniquePairs(horizontal_segments, image_dims)
print("Got %d pairs of horizontal line segments" % len(pairs_of_horizontal_line_segments)) # 15 pairs, 10 after filtering

# Get all the pairs of vertical line segments:
pairs_of_vertical_line_segments = getUniquePairs(vertical_segments, image_dims)
print("Got %d pairs of vertical line segments" % len(pairs_of_vertical_line_segments)) # 10 pairs, 6 after filtering


# Save debug images
for i in range(len(pairs_of_horizontal_line_segments)):
    pair = pairs_of_horizontal_line_segments[i]
    segments = [pair[0], pair[1]]
    img = np.copy(input_image)
    drawSegments(img, segments)
    suffix = str(i).zfill(2)
    cv2.imwrite("segment_pairs_horizontal_"+suffix+".jpg", img)
    #cv2.imshow("Pair of segments", img)
    #cv2.waitKey()
for i in range(len(pairs_of_vertical_line_segments)):
    pair = pairs_of_vertical_line_segments[i]
    segments = [pair[0], pair[1]]
    img = np.copy(input_image)
    drawSegments(img, segments)
    suffix = str(i).zfill(2)
    cv2.imwrite("segment_pairs_vertical_"+suffix+".jpg", img)
    #cv2.imshow("Pair of segments", img)
    #cv2.waitKey()


# Get all combinations of 4 line segments:
sets_of_four_line_segments = getCombinationsOfTwoLists(pairs_of_horizontal_line_segments, pairs_of_vertical_line_segments)
print("Got %d potential quadrilaterals" % len(sets_of_four_line_segments)) # = 60


# Find the valid quadrilateral shapes:
quads = getQuads(sets_of_four_line_segments, image_dims)
print("Got %d valid quads" % len(quads))
for i in range(len(quads)):
    img = np.copy(input_image)
    drawQuad(img, quads[i])

    # Save result images
    suffix = str(i).zfill(2)
    cv2.imwrite("quad_"+suffix+".jpg", img)

    title = "Candidate Quad " + str(i)
    cv2.imshow(title, img)
    cv2.waitKey()
相关问题