我正在使用SQL Server存储有关票证验证的数据。单票可以在多个地方验证。我需要按“入口”和“退出”位置对记录进行分组,并计算两次验证之间经过的持续时间的统计信息。 这是表格(为简洁起见而简化):
CREATE TABLE TestDuration
(VALIDATION_TIMESTAMP datetime,
ID_TICKET bigint,
ID_PLACE bigint)
数据:
INSERT INTO TestDuration(VALIDATION_TIMESTAMP,ID_TICKET,ID_PLACE) VALUES ('2012-07-25 19:24:05.700', 1, 1)
INSERT INTO TestDuration(VALIDATION_TIMESTAMP,ID_TICKET,ID_PLACE) VALUES ('2012-07-25 20:08:04.250', 2, 2)
INSERT INTO TestDuration(VALIDATION_TIMESTAMP,ID_TICKET,ID_PLACE) VALUES ('2012-07-26 10:18:13.040', 3, 3)
INSERT INTO TestDuration(VALIDATION_TIMESTAMP,ID_TICKET,ID_PLACE) VALUES ('2012-07-26 10:18:20.990', 1, 2)
INSERT INTO TestDuration(VALIDATION_TIMESTAMP,ID_TICKET,ID_PLACE) VALUES ('2012-07-26 10:18:29.290', 2, 4)
INSERT INTO TestDuration(VALIDATION_TIMESTAMP,ID_TICKET,ID_PLACE) VALUES ('2012-07-26 10:25:37.040', 1, 4)
这是聚合查询:
SELECT VisitDurationCalcTable.ID_PLACE AS ID_PLACE_IN,
VisitDurationCalcTable.ID_NEXT_VISIT_PLACE AS ID_PLACE_OUT,
COUNT(visitduration) AS NUMBER_OF_VISITS, AVG(visitduration) AS AVERAGE_VISIT_DURATION
FROM (
SELECT EntryData.VALIDATION_TIMESTAMP, EntryData.ID_TICKET, EntryData.ID_PLACE,
(
SELECT TOP 1 ID_PLACE FROM TestDuration
WHERE ID_TICKET=EntryData.ID_TICKET
AND VALIDATION_TIMESTAMP>EntryData.VALIDATION_TIMESTAMP
ORDER BY VALIDATION_TIMESTAMP ASC
)
AS ID_NEXT_VISIT_PLACE,
DATEDIFF(n,EntryData.VALIDATION_TIMESTAMP,
(
SELECT TOP 1 VALIDATION_TIMESTAMP FROM TestDuration WHERE ID_TICKET=EntryData.ID_TICKET and VALIDATION_TIMESTAMP>EntryData.VALIDATION_TIMESTAMP ORDER BY VALIDATION_TIMESTAMP ASC
)
) AS visitduration
FROM TestDuration EntryData)
AS VisitDurationCalcTable
WHERE VisitDurationCalcTable.ID_NEXT_VISIT_PLACE IS NOT NULL
GROUP BY VisitDurationCalcTable.ID_PLACE, VisitDurationCalcTable.ID_NEXT_VISIT_PLACE
查询有效,但我很快遇到了性能问题。对于表中的40K行,查询执行时间约为3分钟。我不是SQL大师,所以无法真正看到如何将查询转换为更快的工作。这不是一个关键的报告,每月只做一次,但它使我的应用看起来很糟糕。我有一种感觉,我在这里缺少一些简单的东西。
答案 0 :(得分:5)
TLDR版本
您显然缺少有助于此查询的索引。添加缺失的索引可能会导致其自身的数量级改进。
如果你在SQL Server 2012上使用LEAD
重写查询也会这样做(尽管这也会从缺失的索引中受益)。
如果您仍然在2005/2008,那么可以对现有查询进行一些改进,但与索引更改相比,效果相对较小。
更长的版本
为了花费3分钟,我假设您根本没有有用的索引,最大的胜利就是简单地添加索引(对于每月运行一次的报告,只需将三列中的数据复制到适当的索引中如果您不想创建永久索引,#temp
表可能就足够了。
您说为了清晰起见,您简化了表格,并且它有40K行。假设以下测试数据
CREATE TABLE TestDuration
(
Id UNIQUEIDENTIFIER DEFAULT NEWID() PRIMARY KEY,
VALIDATION_TIMESTAMP DATETIME,
ID_TICKET BIGINT,
ID_PLACE BIGINT,
OtherColumns CHAR(100) NULL
)
INSERT INTO TestDuration
(VALIDATION_TIMESTAMP,
ID_TICKET,
ID_PLACE)
SELECT TOP 40000 DATEADD(minute, ROW_NUMBER() OVER (ORDER BY (SELECT 0)), GETDATE()),
ABS(CHECKSUM(NEWID())) % 10,
ABS(CHECKSUM(NEWID())) % 100
FROM master..spt_values v1,
master..spt_values v2
您的原始查询在我的计算机上MAXDOP 1
需要51秒,以及以下IO统计信息
Table 'Worktable'. Scan count 79990, logical reads 1167573, physical reads 0
Table 'TestDuration'. Scan count 3, logical reads 2472, physical reads 0.
对于表格中的40,000行中的每一行,它会执行两种所有匹配的ID_TICKET
行,以便按VALIDATION_TIMESTAMP
只需添加一个索引,如下所示,将经过的时间减少到406毫秒,增加了100多倍(此答案中的后续查询假定此索引现已到位)。
CREATE NONCLUSTERED INDEX IX
ON TestDuration(ID_TICKET, VALIDATION_TIMESTAMP)
INCLUDE (ID_PLACE)
该计划现在看起来如下,80,000种排序和假脱机操作被索引搜索取代。
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0
Table 'TestDuration'. Scan count 79991, logical reads 255707, physical reads 0
然而,它仍在为每一行寻找2次。使用CROSS APPLY
重写可以将这些组合起来。
SELECT VisitDurationCalcTable.ID_PLACE AS ID_PLACE_IN,
VisitDurationCalcTable.ID_NEXT_VISIT_PLACE AS ID_PLACE_OUT,
COUNT(visitduration) AS NUMBER_OF_VISITS,
AVG(visitduration) AS AVERAGE_VISIT_DURATION
FROM (SELECT EntryData.VALIDATION_TIMESTAMP,
EntryData.ID_TICKET,
EntryData.ID_PLACE,
CA.ID_PLACE AS ID_NEXT_VISIT_PLACE,
DATEDIFF(n, EntryData.VALIDATION_TIMESTAMP, CA.VALIDATION_TIMESTAMP) AS visitduration
FROM TestDuration EntryData
CROSS APPLY (SELECT TOP 1 ID_PLACE,
VALIDATION_TIMESTAMP
FROM TestDuration
WHERE ID_TICKET = EntryData.ID_TICKET
AND VALIDATION_TIMESTAMP > EntryData.VALIDATION_TIMESTAMP
ORDER BY VALIDATION_TIMESTAMP ASC) CA) AS VisitDurationCalcTable
GROUP BY VisitDurationCalcTable.ID_PLACE,
VisitDurationCalcTable.ID_NEXT_VISIT_PLACE
这给了我269毫秒的经过时间
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0
Table 'TestDuration'. Scan count 40001, logical reads 127988, physical reads 0
虽然读取的数量仍然很高,但是搜索都是刚刚被扫描读取的读取页面,因此它们都是缓存中的所有页面。使用表变量可以减少读取次数。
DECLARE @T TABLE (
VALIDATION_TIMESTAMP DATETIME,
ID_TICKET BIGINT,
ID_PLACE BIGINT,
RN INT
PRIMARY KEY(ID_TICKET, RN) )
INSERT INTO @T
SELECT VALIDATION_TIMESTAMP,
ID_TICKET,
ID_PLACE,
ROW_NUMBER() OVER (PARTITION BY ID_TICKET ORDER BY VALIDATION_TIMESTAMP) AS RN
FROM TestDuration
SELECT T1.ID_PLACE AS ID_PLACE_IN,
T2.ID_PLACE AS ID_PLACE_OUT,
COUNT(*) AS NUMBER_OF_VISITS,
AVG(DATEDIFF(n, T1.VALIDATION_TIMESTAMP, T2.VALIDATION_TIMESTAMP)) AS AVERAGE_VISIT_DURATION
FROM @T T1
INNER MERGE JOIN @T T2
ON T1.ID_TICKET = T2.ID_TICKET
AND T2.RN = T1.RN + 1
GROUP BY T1.ID_PLACE,
T2.ID_PLACE
但对我来说,至少将经过的时间略微增加到301毫秒(插入时为43毫秒,选择时间为258毫秒),但这仍然是一个很好的选择,而不是创建永久索引。
(Insert)
Table 'TestDuration'. Scan count 1, logical reads 233, physical reads 0
(Select)
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0
Table '#0C50D423'. Scan count 2, logical reads 372, physical reads 0
最后,如果您使用的是SQL Server 2012,则可以使用LEAD
(SQL Fiddle)
WITH CTE
AS (SELECT ID_PLACE AS ID_PLACE_IN,
LEAD(ID_PLACE) OVER (PARTITION BY ID_TICKET
ORDER BY VALIDATION_TIMESTAMP) AS ID_PLACE_OUT,
DATEDIFF(n,
VALIDATION_TIMESTAMP,
LEAD(VALIDATION_TIMESTAMP) OVER (PARTITION BY ID_TICKET
ORDER BY VALIDATION_TIMESTAMP)) AS VISIT_DURATION
FROM TestDuration)
SELECT ID_PLACE_IN,
ID_PLACE_OUT,
COUNT(*) AS NUMBER_OF_VISITS,
AVG(VISIT_DURATION) AS AVERAGE_VISIT_DURATION
FROM CTE
WHERE ID_PLACE_OUT IS NOT NULL
GROUP BY ID_PLACE_IN,
ID_PLACE_OUT
这给了我249毫秒的经过时间
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0
Table 'TestDuration'. Scan count 1, logical reads 233, physical reads 0
LEAD
版本在没有索引的情况下也表现良好。省略最佳索引会为计划添加额外的SORT
,这意味着它必须在我的测试表上读取更宽的聚簇索引,但它仍然在293毫秒的经过时间内完成。
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0
Table 'TestDuration'. Scan count 1, logical reads 824, physical reads 0