使用python清理大数据

时间:2012-12-13 19:47:52

标签: python pandas

我必须在python中清理输入数据文件。由于拼写错误,数据字段可能包含字符串而不是数字。我想识别所有字符串,并使用pandas用NaN填充这些字段。另外,我想记录这些字段的索引。

最原始的方法之一是循环遍历每个字段并检查它是否为数字,但如果数据很大,则会耗费大量时间。

我的csv文件包含类似于下表的数据:

Country  Count  Sales
USA         1   65000
UK          3    4000
IND         8       g
SPA         3    9000
NTH         5   80000

.... 假设我在数据中有60,000个这样的行。

理想情况下,我想确定IND行在SALES列下的值无效。有关如何有效地做到这一点的任何建议?

5 个答案:

答案 0 :(得分:10)

read_csv有一个na_values参数:

  

na_values:类似列表或字典,默认None
  要识别为NA / NaN的其他字符串。如果dict通过,则特定的每列NA值

df = pd.read_csv('city.csv', sep='\s+', na_values=['g'])

In [2]: df
Out[2]:
  Country  Count  Sales
0     USA      1  65000
1      UK      3   4000
2     IND      8    NaN
3     SPA      3   9000
4     NTH      5  80000

使用pandas.isnull,您只能在'Sales'列或'Country'系列中选择包含NaN的行:

In [3]: df[pd.isnull(df['Sales'])]
Out[3]: 
  Country  Count  Sales
2     IND      8    NaN

In [4]: df[pd.isnull(df['Sales'])]['Country']
Out[4]: 
2    IND
Name: Country

如果它已经存在于DataFrame中,您可以使用apply将这些数字字符串转换为整数(使用str.isdigit):

df = pd.DataFrame({'Count': {0: 1, 1: 3, 2: 8, 3: 3, 4: 5}, 'Country': {0: 'USA', 1: 'UK', 2: 'IND', 3: 'SPA', 4: 'NTH'}, 'Sales': {0: '65000', 1: '4000', 2: 'g', 3: '9000', 4: '80000'}})

In [12]: df
Out[12]: 
  Country  Count  Sales
0     USA      1  65000
1      UK      3   4000
2     IND      8      g
3     SPA      3   9000
4     NTH      5  80000

In [13]: df['Sales'] = df['Sales'].apply(lambda x: int(x) 
                                                  if str.isdigit(x)
                                                  else np.nan)

In [14]: df
Out[14]: 
  Country  Count  Sales
0     USA      1  65000
1      UK      3   4000
2     IND      8    NaN
3     SPA      3   9000
4     NTH      5  80000

答案 1 :(得分:5)

import os
import numpy as np
import pandas as PD

filename = os.path.expanduser('~/tmp/data.csv')
df = PD.DataFrame(
        np.genfromtxt(
            filename, delimiter = '\t', names = True, dtype = '|O4,<i4,<f8'))
print(df)

产量

  Country  Count  Sales
0     USA      1  65000
1      UK      3   4000
2     IND      8    NaN
3     SPA      3   9000
4     NTH      5  80000

要查找销售额NaN的国家/地区,您可以计算

print(y['Country'][np.isnan(y['Sales'])])

产生pandas.Series

2    IND
Name: Country

答案 2 :(得分:1)

尝试将'sales'字符串转换为int,如果形式良好然后继续,如果不是,它会引发我们捕获的ValueError并替换为该地点支架

bad_lines = []

with open(fname,'rb') as f:
    header = f.readline()
    for j,l in enumerate(f):
        country,count,sales = l.split()
        try:
            sales_count = int(sales)
        except ValueError:
            sales_count = 'NaN'
            bad_lines.append(j)
        # shove in to your data structure
        print country,count,sales_count

您可能需要编辑拆分线的行(因为您的示例被复制为空格而不是制表符)。用您想要处理的数据替换打印行。你可能需要用大熊猫NaN来重新'NaN'。

答案 3 :(得分:1)

filename = open('file.csv')
filename.readline()

for line in filename:
    currentline = line.split(',')
    try:
        int(currentline[2][:-1])
    except:
        print currentline[0], currentline[2][:-1]

IND g

答案 4 :(得分:1)

我建议使用正则表达式:

import re

ss = '''Country  Count  Sales
USA   ,      3  , 65000
UK    ,      3  ,  4000
IND   ,      8  ,     g
SPA   ,     ju  ,  9000
NTH   ,      5  , 80000
XSZ   ,    rob  ,    k3'''

with open('fofo.txt','w') as f:
    f.write(ss)

print ss
print

delimiter = ','

regx = re.compile('(.+?(?:{0}))'
                  '(( *\d+?)| *.+?)'
                  '( *(?:{0}))'
                  '(( *\d+?)| *.+?)'
                  '( *\r?\n?)$'.format(delimiter))

def READ(filepath, regx = regx):
    with open(filepath,'rb+') as f:
        yield f.readline()
        for line in f:
            if None in regx.match(line).group(3,6):
                g2,g3,g5,g6 = regx.match(line).group(2,3,5,6)
                tr = ('%%%ds' % len(g2) % 'NaN' if g3 is None else g3,
                      '%%%ds' % len(g5) % 'NaN' if g6 is None else g6)
                modified_line = regx.sub(('\g<1>%s\g<4>%s\g<7>' % tr),line)
                print ('------------------------------------------------\n'
                       '%r with aberration\n'
                       '%r modified line'
                       % (line,modified_line))
                yield modified_line
            else:
                yield line

with open('modified.txt','wb') as g:
    g.writelines(x for x in READ('fofo.txt'))

结果

Country  Count  Sales
USA   ,      3  , 65000
UK    ,      3  ,  4000
IND   ,      8  ,     g
SPA   ,     ju  ,  9000
NTH   ,      5  , 80000
XSZ   ,    rob  ,    k3

------------------------------------------------
'IND   ,      8  ,     g\r\n' with aberration
'IND   ,      8  ,   NaN\r\n' modified line
------------------------------------------------
'SPA   ,     ju  ,  9000\r\n' with aberration
'SPA   ,    NaN  ,  9000\r\n' modified line
------------------------------------------------
'XSZ   ,    rob  ,    k3' with aberration
'XSZ   ,    NaN  ,   NaN' modified line