我一直在使用TPL Dataflow,但我对我无法解决的问题感到磕磕绊绊:
我有以下架构:
BroadCastBlock<List<object1>>
- &gt; 2个不同的TransformBlock<List<Object1>, Tuple<int, List<Object1>>>
- &gt;两者都链接到TransformManyBlock<Tuple<int, List<Object1>>, Object2>
我改变了链末尾的TransformManyBlock中的lambda表达式:(a)对流式元组执行操作的代码,(b)根本没有代码。
在TransformBlocks中,我测量从第一个项目到达开始的时间,并在TransformBlock.Completion指示块完成时停止(broadCastBlock链接到传播完成设置为true的transfrom块)。
我无法调和的是为什么(b)情况下的transformBlocks比(a)快5-6倍。这完全违背了整个TDF设计意图的意图。变换块中的项目被传递给transfromManyBlock,因此,根据transformManyBlock对变换块完成时影响的项目所做的事情应该无关紧要。我没有看到为什么transfromManyBlock中发生的任何事情可能与前面的TransformBlocks有关的一个原因。
任何可以调和这种奇怪观察的人?
以下是一些显示差异的代码。运行代码时,请确保更改以下两行:
tfb1.transformBlock.LinkTo(transformManyBlock);
tfb2.transformBlock.LinkTo(transformManyBlock);
为:
tfb1.transformBlock.LinkTo(transformManyBlockEmpty);
tfb2.transformBlock.LinkTo(transformManyBlockEmpty);
以便观察前面transformBlocks的运行时差异。
class Program
{
static void Main(string[] args)
{
Test test = new Test();
test.Start();
}
}
class Test
{
private const int numberTransformBlocks = 2;
private int currentGridPointer;
private Dictionary<int, List<Tuple<int, List<Object1>>>> grid;
private BroadcastBlock<List<Object1>> broadCastBlock;
private TransformBlockClass tfb1;
private TransformBlockClass tfb2;
private TransformManyBlock<Tuple<int, List<Object1>>, Object2>
transformManyBlock;
private TransformManyBlock<Tuple<int, List<Object1>>, Object2>
transformManyBlockEmpty;
private ActionBlock<Object2> actionBlock;
public Test()
{
grid = new Dictionary<int, List<Tuple<int, List<Object1>>>>();
broadCastBlock = new BroadcastBlock<List<Object1>>(list => list);
tfb1 = new TransformBlockClass();
tfb2 = new TransformBlockClass();
transformManyBlock = new TransformManyBlock<Tuple<int, List<Object1>>, Object2>
(newTuple =>
{
for (int counter = 1; counter <= 10000000; counter++)
{
double result = Math.Sqrt(counter + 1.0);
}
return new Object2[0];
});
transformManyBlockEmpty
= new TransformManyBlock<Tuple<int, List<Object1>>, Object2>(
tuple =>
{
return new Object2[0];
});
actionBlock = new ActionBlock<Object2>(list =>
{
int tester = 1;
//flush transformManyBlock
});
//linking
broadCastBlock.LinkTo(tfb1.transformBlock
, new DataflowLinkOptions
{ PropagateCompletion = true }
);
broadCastBlock.LinkTo(tfb2.transformBlock
, new DataflowLinkOptions
{ PropagateCompletion = true }
);
//link either to ->transformManyBlock or -> transformManyBlockEmpty
tfb1.transformBlock.LinkTo(transformManyBlock);
tfb2.transformBlock.LinkTo(transformManyBlock);
transformManyBlock.LinkTo(actionBlock
, new DataflowLinkOptions
{ PropagateCompletion = true }
);
transformManyBlockEmpty.LinkTo(actionBlock
, new DataflowLinkOptions
{ PropagateCompletion = true }
);
//completion
Task.WhenAll(tfb1.transformBlock.Completion
, tfb2.transformBlock.Completion)
.ContinueWith(_ =>
{
transformManyBlockEmpty.Complete();
transformManyBlock.Complete();
});
transformManyBlock.Completion.ContinueWith(_ =>
{
Console.WriteLine("TransformManyBlock (with code) completed");
});
transformManyBlockEmpty.Completion.ContinueWith(_ =>
{
Console.WriteLine("TransformManyBlock (empty) completed");
});
}
public void Start()
{
const int numberBlocks = 100;
const int collectionSize = 300000;
//send collection numberBlock-times
for (int i = 0; i < numberBlocks; i++)
{
List<Object1> list = new List<Object1>();
for (int j = 0; j < collectionSize; j++)
{
list.Add(new Object1(j));
}
broadCastBlock.Post(list);
}
//mark broadCastBlock complete
broadCastBlock.Complete();
Console.WriteLine("Core routine finished");
Console.ReadLine();
}
}
class TransformBlockClass
{
private Stopwatch watch;
private bool isStarted;
private int currentIndex;
public TransformBlock<List<Object1>, Tuple<int, List<Object1>>> transformBlock;
public TransformBlockClass()
{
isStarted = false;
watch = new Stopwatch();
transformBlock = new TransformBlock<List<Object1>, Tuple<int, List<Object1>>>
(list =>
{
if (!isStarted)
{
StartUp();
isStarted = true;
}
return new Tuple<int, List<Object1>>(currentIndex++, list);
});
transformBlock.Completion.ContinueWith(_ =>
{
ShutDown();
});
}
private void StartUp()
{
watch.Start();
}
private void ShutDown()
{
watch.Stop();
Console.WriteLine("TransformBlock : Time elapsed in ms: "
+ watch.ElapsedMilliseconds);
}
}
class Object1
{
public int val { get; private set; }
public Object1(int val)
{
this.val = val;
}
}
class Object2
{
public int value { get; private set; }
public List<Object1> collection { get; private set; }
public Object2(int value, List<Object1> collection)
{
this.value = value;
this.collection = collection;
}
}
* 编辑:我发布了另一个代码片段,这次使用了值类型的集合,我无法重现我在上面的代码中观察到的问题。传递引用类型并同时对它们进行操作(即使在不同的数据流块中)可能会阻塞并导致争用吗? *
class Program
{
static void Main(string[] args)
{
Test test = new Test();
test.Start();
}
}
class Test
{
private BroadcastBlock<List<int>> broadCastBlock;
private TransformBlock<List<int>, List<int>> tfb11;
private TransformBlock<List<int>, List<int>> tfb12;
private TransformBlock<List<int>, List<int>> tfb21;
private TransformBlock<List<int>, List<int>> tfb22;
private TransformManyBlock<List<int>, List<int>> transformManyBlock1;
private TransformManyBlock<List<int>, List<int>> transformManyBlock2;
private ActionBlock<List<int>> actionBlock1;
private ActionBlock<List<int>> actionBlock2;
public Test()
{
broadCastBlock = new BroadcastBlock<List<int>>(item => item);
tfb11 = new TransformBlock<List<int>, List<int>>(item =>
{
return item;
});
tfb12 = new TransformBlock<List<int>, List<int>>(item =>
{
return item;
});
tfb21 = new TransformBlock<List<int>, List<int>>(item =>
{
return item;
});
tfb22 = new TransformBlock<List<int>, List<int>>(item =>
{
return item;
});
transformManyBlock1 = new TransformManyBlock<List<int>, List<int>>(item =>
{
Thread.Sleep(100);
//or you can replace the Thread.Sleep(100) with actual work,
//no difference in results. This shows that the issue at hand is
//unrelated to starvation of threads.
return new List<int>[1] { item };
});
transformManyBlock2 = new TransformManyBlock<List<int>, List<int>>(item =>
{
return new List<int>[1] { item };
});
actionBlock1 = new ActionBlock<List<int>>(item =>
{
//flush transformManyBlock
});
actionBlock2 = new ActionBlock<List<int>>(item =>
{
//flush transformManyBlock
});
//linking
broadCastBlock.LinkTo(tfb11, new DataflowLinkOptions
{ PropagateCompletion = true });
broadCastBlock.LinkTo(tfb12, new DataflowLinkOptions
{ PropagateCompletion = true });
broadCastBlock.LinkTo(tfb21, new DataflowLinkOptions
{ PropagateCompletion = true });
broadCastBlock.LinkTo(tfb22, new DataflowLinkOptions
{ PropagateCompletion = true });
tfb11.LinkTo(transformManyBlock1);
tfb12.LinkTo(transformManyBlock1);
tfb21.LinkTo(transformManyBlock2);
tfb22.LinkTo(transformManyBlock2);
transformManyBlock1.LinkTo(actionBlock1
, new DataflowLinkOptions
{ PropagateCompletion = true }
);
transformManyBlock2.LinkTo(actionBlock2
, new DataflowLinkOptions
{ PropagateCompletion = true }
);
//completion
Task.WhenAll(tfb11.Completion, tfb12.Completion).ContinueWith(_ =>
{
Console.WriteLine("TransformBlocks 11 and 12 completed");
transformManyBlock1.Complete();
});
Task.WhenAll(tfb21.Completion, tfb22.Completion).ContinueWith(_ =>
{
Console.WriteLine("TransformBlocks 21 and 22 completed");
transformManyBlock2.Complete();
});
transformManyBlock1.Completion.ContinueWith(_ =>
{
Console.WriteLine
("TransformManyBlock (from tfb11 and tfb12) finished");
});
transformManyBlock2.Completion.ContinueWith(_ =>
{
Console.WriteLine
("TransformManyBlock (from tfb21 and tfb22) finished");
});
}
public void Start()
{
const int numberBlocks = 100;
const int collectionSize = 300000;
//send collection numberBlock-times
for (int i = 0; i < numberBlocks; i++)
{
List<int> list = new List<int>();
for (int j = 0; j < collectionSize; j++)
{
list.Add(j);
}
broadCastBlock.Post(list);
}
//mark broadCastBlock complete
broadCastBlock.Complete();
Console.WriteLine("Core routine finished");
Console.ReadLine();
}
}
答案 0 :(得分:3)
好的,最后的尝试; - )
方案1中观察到的时间增量可以通过 垃圾收集器的不同行为来完全解释。
当运行链接transformManyBlocks的场景1时,运行时行为使得在主线程上创建新项目(列表)期间触发垃圾收集,而在运行场景1并且链接了transformManyBlockEmptys时则不是这种情况。 / p>
请注意,创建新的引用类型实例(Object1)会导致调用GC堆中的内存,从而可能会触发GC集合运行。由于创建了很多Object1实例(和列表),因此垃圾收集器可以为(可能)无法访问的对象扫描堆进行更多的工作。
因此,可以通过以下任何方式最小化观察到的差异:
(注意:我无法解释为什么垃圾收集器在场景1&#34; transformManyBlock&#34;与场景1&#34; transformManyBlockEmpty&#34;中的行为不同,但通过ConcurrencyVisualizer收集的数据清楚地显示了差异。 )
(测试在Core i7 980X上运行,6核,HT启用):
我修改了方案2如下:
// Start a stopwatch per tfb
int tfb11Cnt = 0;
Stopwatch sw11 = new Stopwatch();
tfb11 = new TransformBlock<List<int>, List<int>>(item =>
{
if (Interlocked.CompareExchange(ref tfb11Cnt, 1, 0) == 0)
sw11.Start();
return item;
});
// [...]
// completion
Task.WhenAll(tfb11.Completion, tfb12.Completion).ContinueWith(_ =>
{
Console.WriteLine("TransformBlocks 11 and 12 completed. SW11: {0}, SW12: {1}",
sw11.ElapsedMilliseconds, sw12.ElapsedMilliseconds);
transformManyBlock1.Complete();
});
结果:
接下来,我更改了方案1和2,以便在将输入数据发布到网络之前准备输入数据:
// Scenario 1
//send collection numberBlock-times
var input = new List<List<Object1>>(numberBlocks);
for (int i = 0; i < numberBlocks; i++)
{
var list = new List<Object1>(collectionSize);
for (int j = 0; j < collectionSize; j++)
{
list.Add(new Object1(j));
}
input.Add(list);
}
foreach (var inp in input)
{
broadCastBlock.Post(inp);
Thread.Sleep(10);
}
// Scenario 2
//send collection numberBlock-times
var input = new List<List<int>>(numberBlocks);
for (int i = 0; i < numberBlocks; i++)
{
List<int> list = new List<int>(collectionSize);
for (int j = 0; j < collectionSize; j++)
{
list.Add(j);
}
//broadCastBlock.Post(list);
input.Add(list);
}
foreach (var inp in input)
{
broadCastBlock.Post(inp);
Thread.Sleep(10);
}
结果:
最后,我将代码更改回原始版本,但保留了对引用的引用 创建列表:
var lists = new List<List<Object1>>();
for (int i = 0; i < numberBlocks; i++)
{
List<Object1> list = new List<Object1>();
for (int j = 0; j < collectionSize; j++)
{
list.Add(new Object1(j));
}
lists.Add(list);
broadCastBlock.Post(list);
}
结果:
同样,将Object1从类更改为struct会导致两个块几乎同时完成(并且大约快10倍)。
更新:以下答案不足以解释观察到的行为。
在方案一中,在TransformMany lambda内部执行紧密循环,这会占用CPU并且会使其他线程占用处理器资源。这就是为什么可以观察到完成继续任务的执行延迟的原因。在场景二中,在TransformMany lambda内部执行Thread.Sleep,使其他线程有机会执行Completion continuation任务。观察到的运行时行为差异与TPL数据流无关。为了改善观察到的增量,应该在场景1中的循环体内引入一个Thread.Sleep:
for (int counter = 1; counter <= 10000000; counter++)
{
double result = Math.Sqrt(counter + 1.0);
// Back off for a little while
Thread.Sleep(200);
}
(以下是我的原始答案。我没有仔细阅读OP的问题,只是在阅读了他的评论之后才明白他的问题。我仍然把它留在这里参考。)
你确定你正在测量正确的东西吗?请注意,当您执行以下操作时:transformBlock.Completion.ContinueWith(_ => ShutDown());
,那么您的时间测量将受到TaskScheduler行为的影响(例如,在继续任务开始执行之前需要多长时间)。虽然我无法观察到你在我的机器上看到的差异,但是当使用专用线程测量时间时,我得到了精确结果(就tfb1和tfb2完成时间之间的差值而言):
// Within your Test.Start() method...
Thread timewatch = new Thread(() =>
{
var sw = Stopwatch.StartNew();
tfb1.transformBlock.Completion.Wait();
Console.WriteLine("tfb1.transformBlock completed within {0} ms",
sw.ElapsedMilliseconds);
});
Thread timewatchempty = new Thread(() =>
{
var sw = Stopwatch.StartNew();
tfb2.transformBlock.Completion.Wait();
Console.WriteLine("tfb2.transformBlock completed within {0} ms",
sw.ElapsedMilliseconds);
});
timewatch.Start();
timewatchempty.Start();
//send collection numberBlock-times
for (int i = 0; i < numberBlocks; i++)
{
// ... rest of the code