我遇到问题返回列表,以便我能够将其保存在文件中然后加载它以便保存权重并再次检索。抱歉这个愚蠢的问题,但我如何从SaveNetwork方法调用并保存权重列表,我无法真正掌握我能解决问题的方法。我知道我没有创建List权重的新实例,但如果我这样做,我将丢失存储在此列表中的当前权重。
public class Neuron
{
private double bias; // Bias value.
private double error; // Sum of error.
private double input; // Sum of inputs.
private double gradient = 5; // Steepness of sigmoid curve.
private double learnRate = 0.01; // Learning rate.
private double output = double.MinValue; // Preset value of neuron.
public List<Weight> weights; // Collection of weights to inputs.
public Neuron() { }
public Neuron(Layer inputs, Random rnd)
{
weights = new List<Weight>();
foreach (Neuron input in inputs)
{
Weight w = new Weight();
w.Input = input;
w.Value = rnd.NextDouble() * 2 - 1;
weights.Add(w);
}
}
public static void SaveNetwork(string path)
{
FileStream FS = new FileStream(path, FileMode.Create);
BinaryFormatter BF = new BinaryFormatter();
BF.Serialize(FS,/* The List in this case is List weights ***/ );
FS.Close();
}
public void LoadNetwork(string path)
{
FileStream FS = new FileStream(path, FileMode.Open);
BinaryFormatter BF = new BinaryFormatter();
weights = (List<Weight>)BF.Deserialize(FS);
FS.Close();
}
更新 - 我正在使用与下面的代码类似的层次结构,该结构取自Dynamic Notions博客,该博客解释了如何创建神经网络。我想要实现的是,之后神经网络已经学会了我希望能够保存列表权重,以便我能够在程序停止时加载权重以跳过网络训练。所以基本上从类网络我想访问神经类中的这个列表而不在新方法中创建新实例,否则我将只获得一个空列表。希望它更清楚,因为我不知道如何更好地解释它...非常感谢
public class Network{
//some variables..
[STAThread]
static void Main()
{
new Network();
}
public Network()
{
LoadPatterns();
Initialise();
Train();
Test();
}
private void Train()
{
double error;
do
{
error = 0;
foreach (Pattern pattern in _patterns)
{
double delta = pattern.Output - Activate(pattern);
AdjustWeights(delta);
error += Math.Pow(delta, 2);
}
Console.WriteLine("Iteration {0}\tError {1:0.000}", _iteration, error);
_iteration++;
if (_iteration > _restartAfter) Initialise();
} while (error > 0.1);
}
private void Test()
{
}
// Must be able to call and save the List<Weight> From here
private double Activate(Pattern pattern)
{
}
private void AdjustWeights(double delta)
{
_output.AdjustWeights(delta);
foreach (Neuron neuron in _hidden)
{
neuron.AdjustWeights(_output.ErrorFeedback(neuron));
}
}
private void Initialise()
{
_inputs = new Layer(_inputDims);
_hidden = new Layer(_hiddenDims, _inputs, _rnd);
_output = new Neuron(_hidden, _rnd);
_iteration = 0;
Console.WriteLine("Network Initialised");
}
private void LoadPatterns()
{
}
}
public class Layer : List<Neuron>
{
public Layer(int size)
{
for (int i = 0; i < size; i++)
base.Add(new Neuron());
}
public Layer(int size, Layer layer, Random rnd)
{
for (int i = 0; i < size; i++)
base.Add(new Neuron(layer, rnd)); //this is where Neuron class is instantiated
}
}
public class Neuron
{
//some other vars
private List<Weight> _weights; // This is the list in question.
public Neuron() { }
public Neuron(Layer inputs, Random rnd)
{
_weights = new List<Weight>();
foreach (Neuron input in inputs)
{
Weight w = new Weight();
w.Input = input;
w.Value = rnd.NextDouble() * 2 - 1;
_weights.Add(w);
}
}
}
public class Weight
{
public Neuron Input;
public double Value;
}
答案 0 :(得分:0)
从static
移除SaveNetwork()
关键字,然后在您收到评论的地方使用weights
。