我对CUDA很新。我需要在计算中使用线程ID,但它不起作用。 rem总是0.我需要线程的索引来计算数组中的索引,所以我不能将它们转换为浮点数来进行计算。
内核如下:
_global__ void initializationCubes(float* dVer, float* dCub, int gridSize, float* test)
{
int index=blockIdx.x*blockDim.x+threadIdx.x;
if(index<(gridSize*gridSize*gridSize))
{
// conversion index -> i,j,k
int rem=index;
int qot=(rem/gridSize);
int i=rem-(qot*gridSize);
rem=(rem)/(gridSize);
qot=(rem/gridSize);
int j=rem-(qot*gridSize);
rem=(rem)/(gridSize);
qot=(rem/gridSize);
int k=rem-(qot*gridSize);
for(int x=0;x<7;x++){
// these first three are used to test
dCub[index*56+0+x] =index;
dCub[index*56+7+x] =rem;
dCub[index*56+14+x]=k;
dCub[index*56+21+x]=dVer[((i*(gridSize+1)+(j+1))*(gridSize+1)+k)*7+x];
dCub[index*56+28+x]=dVer[(((i+1)*(gridSize+1)+(j))*(gridSize+1)+k)*7+x];
dCub[index*56+35+x]=dVer[(((i+1)*(gridSize+1)+(j))*(gridSize+1)+k+1)*7+x];
dCub[index*56+42+x]=dVer[(((i+1)*(gridSize+1)+(j+1))*(gridSize+1)+k+1)*7+x];
dCub[index*56+49+x]=dVer[(((i+1)*(gridSize+1)+(j+1))*(gridSize+1)+k)*7+x];
}
}
}
__global__ void initializationVertices(float* dVer, int gridSize){
int currentVertex=0;
for(int i=0; i<gridSize+1; i++)
{
for(int j=0; j<gridSize+1; j++)
{
for(int k=0; k<gridSize+1; k++)
{
dVer[currentVertex+0]=((i*2.0f)/(gridSize)-1.0f)*2.0f;
dVer[currentVertex+1]=((j*2.0f)/(gridSize)-1.0f)*2.0f;
dVer[currentVertex+2]=((k*2.0f)/(gridSize)-1.0f)*2.0f;
currentVertex+=7;
}
}
}
extern "C"
void initializationCUDA1( const int verticesAtEndsOfEdges[24], const int eTable[256], int gSize, int numberParticles ) {
numParticles=numberParticles;
gridSize=gSize;
numVertices=(gridSize+1)*(gridSize+1)*(gridSize+1);
numCubes=(gridSize)*(gridSize)*(gridSize);
size_t pitchv=7;
cudaMallocPitch((void**)&dVer, &pitchv, 7 * sizeof(float), (gridSize+1)*(gridSize+1)*(gridSize+1));
size_t pitchc=7;
cudaMallocPitch((void**)&dCub, &pitchc, 7 * sizeof(float), (gridSize)*(gridSize)*(gridSize)*8);
cudaMalloc((void **)&verticesAtEnds, 24*sizeof(int));
cudaMalloc((void **)&dedgeTable, 256*sizeof(int));
cudaMalloc((void **)&dtriTable, 256*16*sizeof(int));
cudaMalloc((void **)&ballPoint, 3*sizeof(float));
cudaMalloc((void **)&dpositions, 3*numberParticles*sizeof(float));
cudaMalloc((void **)&dedgeVertices, numCubes*6*12*sizeof(float));
cudaMalloc((void **)&result, numCubes*18*sizeof(float));
output=(float*)malloc(numCubes*18*sizeof(float));
cudaMalloc((void **)&numFaces, 10*sizeof(int));
cudaMalloc((void **)&test, sizeof(float));
initializationVertices<<<1,1>>>(dVer, gridSize);
initializationCubes<<<128,256>>>( dVer, dCub, gridSize, test);
float* tmp =(float*)malloc(numCubes*56*(sizeof(float)));
cudaMemcpy(tmp, dCub, numCubes*56*sizeof(float), cudaMemcpyDeviceToHost);
for(int a=0;a<100;a++){
printf("%f\n",tmp[a]);
}
}
修改
gridSize是40 - &gt;线程的迭代从0到64000
当我打印我的函数之外的值时,rem,i,j和k都等于0.
size_t pitchv = 7; cudaMallocPitch((void **)&amp; dVer,&amp; pitchv,7 * sizeof(float),(gridSize + 1)(gridSize + 1)(gridSize + 1));
size_t pitchc = 7; cudaMallocPitch((void **)&amp; dCub,&amp; pitchc,7 * sizeof(float),(gridSize)(gridSize)(gridSize)* 8);
initializationCubes&lt;&lt;&lt;&lt; 1,1&gt;&gt;&gt;(dVer,dCub,gridSize,test);
答案 0 :(得分:3)
如果gridSize
是网格的大小,顾名思义,rem
和qot
在执行代码后总是为零,因为它们除以更大的值比他们自己。
如果您正在寻找三维网格中的索引,这正是threadIdx
和blockIdx
有三个组件的原因。根本不需要昂贵的部门,只需使用此标准代码段:
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int k = blockIdx.z * blockDim.z + threadIdx.z;
if (i < myBlockSize.x && j < myBlockSize.y && k<myBlockSize.z) {
// your kernel code...
}
并使用适当的block-和gridsize的y和z分量值以及设置为所需网格大小的参数或全局变量myBlockSize
启动内核(如果不能将其分解为整数)块和网格尺寸。)