是否有T-SQL(SQL Server 2008R2)查询将TABLE_1
转换为预期的结果集?
TABLE_1
+----------+-------------------------+---------+------+
| IdDevice | Timestamp | M300 | M400 |
+----------+-------------------------+---------+------+
| 3 | 2012-12-05 16:29:51.000 | 2357,69 | 520 |
| 6 | 2012-12-05 16:29:51.000 | 1694,81 | 470 |
| 1 | 2012-12-05 16:29:51.000 | 2046,33 | 111 |
+----------+-------------------------+---------+------+
预期结果集
+-------------------------+---------+--------+---------+--------+---------+--------+
| Timestamp | 3_M300 | 3_M400 | 6_M300 | 6_M400 | 6_M300 | 6_M400 |
+-------------------------+---------+--------+---------+--------+---------+--------+
| 2012-12-05 16:29:51.000 | 2357,69 | 520 | 1694,81 | 470 | 2046,33 | 111 |
+-------------------------+---------+--------+---------+--------+---------+--------+
答案 0 :(得分:2)
这仍然是PIVOT
查询,但在PIVOT
之前,您必须执行UNPIVOT
个列。
首先,执行获取当前多列的UNPIVOT
并将它们转换为两列 - 一列具有值,另一列具有列名称。 UNPIVOT
的关键是数据类型相同,因此在子查询I cast
中,任何列都使用相同的数据类型:
select timestamp,
value, cast(iddevice as varchar(10)) + '_'+col as col
from
(
select iddevice,
timestamp,
cast(m300 as varchar(10)) m300,
cast(m400 as varchar(10)) m400
from yourtable
) src
unpivot
(
value
for col in (m300, m400)
) unpiv
结果:
| TIMESTAMP | VALUE | COL |
------------------------------------------------------
| December, 05 2012 16:29:51+0000 | 2357,69 | 3_m300 |
| December, 05 2012 16:29:51+0000 | 520 | 3_m400 |
| December, 05 2012 16:29:51+0000 | 1694,81 | 6_m300 |
| December, 05 2012 16:29:51+0000 | 470 | 6_m400 |
| December, 05 2012 16:29:51+0000 | 2046,33 | 1_m300 |
| December, 05 2012 16:29:51+0000 | 111 | 1_m400 |
完成unpivot后,您可以应用PIVOT
功能:
select *
from
(
select timestamp,
value, cast(iddevice as varchar(10)) + '_'+col as col
from
(
select iddevice,
timestamp,
cast(m300 as varchar(10)) m300,
cast(m400 as varchar(10)) m400
from yourtable
) src
unpivot
(
value
for col in (m300, m400)
) unpiv
) src1
pivot
(
max(value)
for col in ([3_m300], [3_m400],
[6_m300], [6_m400],
[1_m300], [1_m400])
) piv
结果:
| TIMESTAMP | 3_M300 | 3_M400 | 6_M300 | 6_M400 | 1_M300 | 1_M400 |
--------------------------------------------------------------------------------------------
| December, 05 2012 16:29:51+0000 | 2357,69 | 520 | 1694,81 | 470 | 2046,33 | 111 |
如果您要将未知数量的IdDevices
转换为列,则可以使用动态SQL:
DECLARE @cols AS NVARCHAR(MAX),
@query AS NVARCHAR(MAX)
select @cols = STUFF((SELECT DISTINCT ','
+ quotename(cast(t.IdDevice as varchar(10)) +'_'
+c.name)
from yourtable t
cross apply sys.columns as C
where C.object_id = object_id('yourtable') and
C.name not in ('IdDevice', 'Timestamp')
FOR XML PATH(''), TYPE
).value('.', 'NVARCHAR(MAX)')
,1,1,'')
set @query = 'SELECT timestamp,' + @cols + ' from
(
select timestamp,
value, cast(iddevice as varchar(10)) + ''_''+col as col
from
(
select iddevice,
timestamp,
cast(m300 as varchar(10)) m300,
cast(m400 as varchar(10)) m400
from yourtable
) src
unpivot
(
value
for col in (m300, m400)
) unpiv
) x
pivot
(
max(value)
for col in (' + @cols + ')
) p '
execute(@query)
编辑,如果您需要每个m值的总计字段,则可以使用:
select timestamp,
[3_m300], [3_m400],
[6_m300], [6_m400],
[1_m300], [1_m400],
[1_m300] + [3_m300] + [6_m300] Total_m300,
[1_m400] + [3_m400] + [6_m400] Total_m400
from
(
select timestamp,
value, cast(iddevice as varchar(10)) + '_'+col as col
from
(
select iddevice,
timestamp,
m300,
m400
from yourtable
) src
unpivot
(
value
for col in (m300, m400)
) unpiv
) src1
pivot
(
sum(value)
for col in ([3_m300], [3_m400],
[6_m300], [6_m400],
[1_m300], [1_m400])
) piv