我想知道是否有一种更有效的方法来加速代码。它使用了一个过程,其中嵌套循环中需要子采样(之前的回答https://stackoverflow.com/a/13629611/1176697有助于提高效率)。 当B = 500时,R有倾向于挂起,尽管计算机操作系统不会受到不适当的影响。
目标是运行以下代码,B = 1000并使用更大的m值(m = 75,m = 100,m = 150)
我在下面的代码中详细介绍了该过程,并附带了一个可重现数据集的链接。
#Estimation of order m `leave one out' hyperbolic efficiency scores
#The procedure sequentially works through each observation in `IOs' and
#calculates a DEA order M efficiency score by leaving out the observation
# under investigation in the DEA reference set
# Step 1: Load the packages, create Inputs (x) and Outputs (y), choose
# m(the order of the partial frontier or reference set to be used in DEA)
# and B the number of monte carlo simulations of each m order DEA estimate
# Step 2: For each observations a in x, x1 and y1
#are create which 'leaves out' this observation.
# Step 3: From these matrices subsamples (xref, yref) of size [m,] are
# taken and used in DEA estimation.
# Step 4: The DEA estimation uses the m subsample from step 3
# as a reference set and evaluates the efficiency of the observation that
# has been 'left out'
#(thus the first two arguments in DEA are matrices of order [1,3] )
# Step 5: Steps 3 and 4 are repeated B times to obtain B simulations of the
# order m efficiency score and a mean and standard deviation are
# calculated and placed in effm.
# IOs data can be found here: https://dl.dropbox.com/u/1972975/IOs.txt
# From IOs an Input matrix (x[1376,3]) and an Output matrix (y[1376,3])
# are created.
library(Benchmarking)
x <- IOs[,1:3]
y<-IOs[,4:6]
A<-nrow(x)
effm <- matrix(nrow = A, ncol = 2)
m <- 50
B <- 500
pb <- txtProgressBar(min = 0,
max = A, style=3)
for(a in 1:A) {
x1 <- x[-a,]
y1 <- y[-a,]
theta <- numeric(B)
xynrow<-nrow(x1)
mB<-m*B
xrefm <- x1[sample(1:xynrow, mB, replace=TRUE),] # get all of your samples at once(https://stackoverflow.com/a/13629611/1176697)
yrefm <- y1[sample(1:xynrow, mB, replace=TRUE),]
deaX <- as.matrix(x[a,], ncol=3)
deaY <-as.matrix(y[a,], ncol=3)
for(i in 1:B){
theta[i] <- dea(deaX, deaY, RTS = 'vrs', ORIENTATION = 'graph',
xrefm[(1:m) + (i-1) * m,], yrefm[(1:m) + (i-1) * m,], FAST=TRUE)
}
effm[a,1] <- mean(theta)
effm[a,2] <- sd(theta) / sqrt(B)
setTxtProgressBar(pb, a)
}
close(pb)