我正在使用python进行对象检测的图像处理。我需要将我的图像分成所有可能的块。例如,鉴于这个玩具形象:
x = np.arange(25)
x = x.reshape((5, 5))
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]
我想检索给定大小的所有可能块,例如2x2块是:
[[0 1]
[5 6]]
[[1 2]
[6 7]]
..等等。我怎么能这样做?
答案 0 :(得分:11)
scikit图片extract_patches_2d执行此操作
>>> from sklearn.feature_extraction import image
>>> one_image = np.arange(16).reshape((4, 4))
>>> one_image
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> print(patches.shape)
(9, 2, 2)
>>> patches[0]
array([[0, 1],
[4, 5]])
>>> patches[1]
array([[1, 2],
[5, 6]])
>>> patches[8]
array([[10, 11],
[14, 15]])
答案 1 :(得分:3)
您可以使用以下内容:
def rolling_window(arr, window):
"""Very basic multi dimensional rolling window. window should be the shape of
of the desired subarrays. Window is either a scalar or a tuple of same size
as `arr.shape`.
"""
shape = np.array(arr.shape*2)
strides = np.array(arr.strides*2)
window = np.asarray(window)
shape[arr.ndim:] = window # new dimensions size
shape[:arr.ndim] -= window - 1
if np.any(shape < 1):
raise ValueError('window size is too large')
return np.lib.stride_tricks.as_strided(arr, shape=shape, strides=strides)
# Now:
slices = rolling_window(arr, 2)
# Slices will be 4-d not 3-d as you wanted. You can reshape
# but it may need to copy (not if you have done no slicing, etc. with the array):
slices = slices.reshape(-1,slices.shape[2:])
答案 2 :(得分:1)
>>> x = np.arange(12).reshape(3,4)
>>> print x
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
>>> r = 2
>>> for z in [x[i:i+r,j:j+r] for i in xrange(x.shape[0] - r + 1) for j in xrange(x.shape[1] - r + 1)]:
... print z
...
[[0 1]
[4 5]]
[[1 2]
[5 6]]
[[2 3]
[6 7]]
[[4 5]
[8 9]]
[[ 5 6]
[ 9 10]]
[[ 6 7]
[10 11]]