我正在尝试实施Bitonic-Sort算法。
Parallel Bitonic Sort Algorithm for processor Pk (for k := 0 : : : P 1)
d:= log P /* cube dimension */
sort(local datak) /* sequential sort */
/* Bitonic Sort follows */
for i:=1 to d do
window-id = Most Signicant (d-i) bits of Pk
for j:=(i-1) down to 0 do
if((window-id is even AND jth bit of Pk = 0) OR
(window-id is odd AND jth bit of Pk = 1))
then call CompareLow(j)
else call CompareHigh(j)
endif
endfor
endfor
来源:http://www.cs.rutgers.edu/~venugopa/parallel_summer2012/mpi_bitonic.html#expl
不幸的是,CompareHigh和CompareLow的描述充其量是不稳定的。
根据我的理解,CompareHigh将从调用进程及其伙伴进程中获取数据,将上半部分合并,排序并存储在调用进程中。数据。 CompareLow也会这样做,并采取下半部分。
我已经验证我的实现是选择正确的合作伙伴并在每次迭代期间为每个进程调用正确的CompareHigh / Low方法,但我的输出仍然只是部分排序。我假设我的CompareHigh / Low实现不正确。
以下是我当前输出的示例:
[0] [17 24 30 37]
[1] [ 92 114 147 212]
[2] [ 12 89 92 102]
[3] [172 185 202 248]
[4] [ 30 51 111 148]
[5] [148 149 158 172]
[6] [ 17 24 59 149]
[7] [160 230 247 250]
这是我的CompareHigh,CompareLow和合并函数:
def CompareHigh(self, j):
partner = self.getPartner(self.rank, j)
print "[%d] initiating HIGH with %d" % (self.rank, partner)
new_data = np.empty(self.data.shape, dtype='i')
self.comm.Send(self.data, dest = partner, tag=55)
self.comm.Recv(new_data, source = partner, tag=55)
assert(self.data.shape == new_data.shape)
self.data = np.split(self.merge(data, new_data), 2)[1]
def CompareLow(self, j):
partner = self.getPartner(self.rank, j)
print "[%d] initiating LOW with %d" % (self.rank, partner)
new_data = np.empty(self.data.shape, dtype='i')
self.comm.Recv(new_data, source = partner, tag=55)
self.comm.Send(self.data, dest = partner, tag=55)
assert(self.data.shape == new_data.shape)
self.data = np.split(self.merge(data, new_data), 2)[0]
def merge(self, a, b):
merged = []
i = 0
j = 0
while i < a.shape[0] and j < b.shape[0]:
if a[i] < b[j]:
merged.append(a[i])
i += 1
else:
merged.append(b[j])
j += 1
while i < a.shape[0]:
merged.append(a[i])
i += 1
while j < a.shape[0]:
merged.append(b[j])
j += 1
return np.array(merged)
def getPartner(self, rank, j):
# Partner process is process with j_th bit of rank flipped
j_mask = 1 << j
partner = rank ^ j_mask
return partner
最后,这里是实际的算法循环:
# Generating map of bit_j for each process.
bit_j = [0 for i in range(d)]
for i in range(d):
bit_j[i] = (rank >> i) & 1
bs = BitonicSorter(data)
for i in range(1, d+1):
window_id = rank >> i
for j in reversed(range(0, i)):
if rank == 0: print "[%d] iteration %d, %d" %(rank, i, j)
comm.Barrier()
if (window_id%2 == 0 and bit_j[j] == 0) \
or (window_id%2 == 1 and bit_j[j] == 1):
bs.CompareLow(j)
else:
bs.CompareHigh(j)
if rank == 0: print ""
comm.Barrier()
if rank != 0:
comm.Send(bs.data, dest = 0, tag=55)
comm.Barrier()
else:
dataset[0] = bs.data
for i in range(1, size) :
comm.Recv(dataset[i], source = i, tag=55)
comm.Barrier()
for i, datai in enumerate(dataset):
print "[%d]\t%s" % (i, str(datai))
dataset = np.array(dataset).reshape(data_size)
答案 0 :(得分:1)
好吧开玩笑我:
self.data = np.split(self.merge(data, new_data), 2)
是有问题的线条。我不确定哪些变量数据被绑定,但那就是问题所在。