我试图操作liblinear库(java),并且我使用了一个超级简单的例子,找到了here模板。 案例示例是确定形状是正方形还是矩形。
这是我的代码:
import java.io.File;
import java.io.IOException;
import de.bwaldvogel.liblinear.Feature;
import de.bwaldvogel.liblinear.FeatureNode;
import de.bwaldvogel.liblinear.Linear;
import de.bwaldvogel.liblinear.Model;
import de.bwaldvogel.liblinear.Parameter;
import de.bwaldvogel.liblinear.Problem;
import de.bwaldvogel.liblinear.SolverType;
public class Main {
static int NUM_OF_TS_EXAMPLES = 8;
// 1 = square, -1 = non-square
static double[] GROUPS_ARRAY = {1, 1, 1, 1, -1, -1, -1, -1};
// squares
static FeatureNode[] shape1 = {new FeatureNode(1, 2), new FeatureNode(2, 2)};
static FeatureNode[] shape2 = {new FeatureNode(1, 4), new FeatureNode(2, 4)};
static FeatureNode[] shape3 = {new FeatureNode(1, 9), new FeatureNode(2, 9)};
static FeatureNode[] shape4 = {new FeatureNode(1, 10), new FeatureNode(2, 10)};
// not squares
static FeatureNode[] shape5 = {new FeatureNode(1, 5), new FeatureNode(2, 6)};
static FeatureNode[] shape6 = {new FeatureNode(1, 3), new FeatureNode(2, 4)};
static FeatureNode[] shape7 = {new FeatureNode(1, 6), new FeatureNode(2, 9)};
static FeatureNode[] shape8 = {new FeatureNode(1, 4), new FeatureNode(2, 2)};
// unknown squares
static FeatureNode[] unkown1 = {new FeatureNode(1, 32), new FeatureNode(2, 32)};
static FeatureNode[] unkown2 = {new FeatureNode(1, 4), new FeatureNode(2, 2)};
static FeatureNode[] unkown3 = {new FeatureNode(1, 4), new FeatureNode(2, 2)};
static FeatureNode[][] trainingSetWithUnknown = {
shape1,
shape2,
shape3,
shape4,
shape5,
shape6,
shape7,
shape8
};
public static void main(String[] args) throws IOException {
Problem problem = new Problem();
// number of training examples
problem.l = NUM_OF_TS_EXAMPLES;
// number of features
problem.n = NUM_OF_TS_EXAMPLES + 1;
// problem.x = ... // feature nodes
problem.x = trainingSetWithUnknown;
// problem.y = ... // target values
problem.y = GROUPS_ARRAY;
SolverType solver = SolverType.L2R_LR; // -s 0
double C = 1.0; // cost of constraints violation
double eps = 0.01; // stopping criteria
Parameter parameter = new Parameter(solver, C, eps);
Model model = Linear.train(problem, parameter);
File modelFile = new File("model");
model.save(modelFile);
// load model or use it directly
model = Model.load(modelFile);
Feature[] instance = new FeatureNode[5];
double prediction = Linear.predict(model, instance);
}
}
运行后,我在我的控制台中得到了这个结果:
iter 1 act 1.969e-02 pre 1.966e-02 delta 4.283e-03 f 5.545e+00 |g| 9.192e+00 CG 1
Exception in thread "main" java.lang.NullPointerException
at de.bwaldvogel.liblinear.Linear.predictValues(Linear.java:370)
at de.bwaldvogel.liblinear.Linear.predict(Linear.java:316)
at Main.main(Main.java:73)
我做错了什么?
答案 0 :(得分:1)
我想NullPointerException
的原因是你将未初始化的特征数组传递给预测函数 - 尝试首先初始化instance
:
Feature[] instance = { new FeatureNode(1, 4), new FeatureNode(2, 2) };
答案 1 :(得分:0)
除了NullPointer问题之外,这个例子只产生奇怪的预测,主要是因为功能数量错误,这是我的版本:
public class LibLinearTest {
// 1 = quadratic, -1 = non-quadratic
static double[] GROUPS_ARRAY = {1, 1, 1, 1, -1, -1, -1, -1};
// quadratic
static FeatureNode[] tp1 = {new FeatureNode(1, 2), new FeatureNode(2, 4)};
static FeatureNode[] tp2 = {new FeatureNode(1, 4), new FeatureNode(2, 8)};
static FeatureNode[] tp3 = {new FeatureNode(1, 9), new FeatureNode(2, 81)};
static FeatureNode[] tp4 = {new FeatureNode(1, 10), new FeatureNode(2, 100)};
// not quadratic
static FeatureNode[] tp5 = {new FeatureNode(1, 5), new FeatureNode(2, 6)};
static FeatureNode[] tp6 = {new FeatureNode(1, 3), new FeatureNode(2, 4)};
static FeatureNode[] tp7 = {new FeatureNode(1, 6), new FeatureNode(2, 9)};
static FeatureNode[] tp8 = {new FeatureNode(1, 4), new FeatureNode(2, 2)};
// unknown
static FeatureNode[] up1 = {new FeatureNode(1, 32), new FeatureNode(2, 32)};
static FeatureNode[] up2 = {new FeatureNode(1, 5), new FeatureNode(2, 25)};
static FeatureNode[] up3 = {new FeatureNode(1, 4), new FeatureNode(2, 2)};
static FeatureNode[][] trainingSetWithUnknown = {
tp1, tp2, tp3, tp4, tp5, tp6, tp7, tp8
};
public static void main(String[] args) throws IOException {
Problem problem = new Problem();
problem.l = trainingSetWithUnknown.length;
problem.n = 2;
problem.x = trainingSetWithUnknown;
problem.y = GROUPS_ARRAY;
SolverType solver = SolverType.L2R_LR; // -s 0
double C = 1.0; // cost of constraints violation
double eps = 0.001; // stopping criteria
Parameter parameter = new Parameter(solver, C, eps);
Model model = Linear.train(problem, parameter);
Feature[] instance = tp1;
double prediction = Linear.predict(model, instance);
System.out.println("prediction : " + prediction);
}
}