我正在研究项目欧拉计划,以便“启蒙”而不仅仅是解决它们。我已经使用80x80矩阵上的动态程序解决了问题81但是当我尝试使用统一成本搜索来解决它时,我的程序从未消失。我只是想知道这个问题是否易于使用统一成本搜索?问题出现在this link。
答案 0 :(得分:3)
UCS绝对有效。
from Queue import PriorityQueue
with open('matrix.txt') as f:
data = map(lambda s: map(int, s.strip().split(',')), f.readlines())
seen = set()
pq = PriorityQueue()
pq.put((data[0][0], 0, 0))
while not pq.empty():
(s, i, j) = pq.get()
if (i, j) not in seen:
seen.add((i, j))
if i + 1 < len(data): pq.put((s + data[i + 1][j], i + 1, j))
if j + 1 < len(data[i]): pq.put((s + data[i][j + 1], i, j + 1))
if i + 1 >= len(data) and j + 1 >= len(data): print s
答案 1 :(得分:1)
这里(作为参考)是在c ++中使用Uniform-cost search的解决方案,使用-O2
编译在i7上花费不到一秒钟(没有优化需要3秒):
#include <iostream>
#include <fstream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
struct Node {
size_t i, j; int cost;
Node(size_t i, size_t j, int cost) : i(i), j(j), cost(cost) {}
};
bool operator<(const Node& a, const Node& b) { return b.cost < a.cost; }
bool operator==(const Node& a, const Node& b) { return a.i == b.i && a.j == b.j; }
int main() {
const size_t SIZE = 80;
ifstream fis("matrix.txt");
int matrix[SIZE][SIZE];
char crap;
for (size_t i = 0; i < SIZE; i++)
for (size_t j = 0; j < SIZE; j++) {
fis >> matrix[i][j];
if (j < SIZE - 1) fis >> crap;
}
vector<Node> open;
set<Node> closed;
open.push_back(Node(0, 0, matrix[0][0]));
make_heap(open.begin(), open.end());
while (!open.empty()) {
Node node = open.front();
pop_heap(open.begin(), open.end()); open.pop_back();
if (node.i == SIZE - 1 && node.j == SIZE - 1) {
cout << "solution " << node.cost << endl;
return 0;
}
closed.insert(node);
Node children[] = { Node(node.i + 1, node.j, node.cost + matrix[node.i + 1][node.j]),
Node(node.i, node.j + 1, node.cost + matrix[node.i][node.j + 1]) };
for (int k = 0; k < 2; k++) {
Node child = children[k];
if (!closed.count(child)) {
vector<Node>::iterator elem = find(open.begin(), open.end(), child);
if (elem == open.end()) {
open.push_back(child); push_heap(open.begin(), open.end());
} else if (child.cost < (*elem).cost) {
(*elem).cost = child.cost;
make_heap(open.begin(), open.end());
}
}
}
}
}
这个解决方案有点慢,因为它在开放节点列表中调用make_heap
进行元素替换,它在向量中重建堆,但不应该永远着陆并证明问题可以用UCS。建议使用Project Euler问题陈述中给出的基本案例来调试解决方案。