我想基于两列纬度和经度在R中创建唯一ID,以便重复的位置具有相同的群集ID。
例如:
LAT LONG Cluster_ID
13.5330 -15.4180 1
13.5330 -15.4180 1
13.5330 -15.4180 1
13.5330 -15.4180 1
13.5330 -15.4170 2
13.5330 -15.4170 2
13.5330 -15.4170 2
13.5340 -14.9350 3
13.5340 -14.9350 3
13.5340 -15.9170 4
13.3670 -14.6190 5
答案 0 :(得分:25)
这是使用interaction
的一种方式。
d <- read.table(text='LAT LONG
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4170
13.5330 -15.4170
13.5330 -15.4170
13.5340 -14.9350
13.5340 -14.9350
13.5340 -15.9170
13.3670 -14.6190', header=TRUE)
d <- transform(d, Cluster_ID = as.numeric(interaction(LAT, LONG, drop=TRUE)))
# LAT LONG Cluster_ID
# 1 13.533 -15.418 2
# 2 13.533 -15.418 2
# 3 13.533 -15.418 2
# 4 13.533 -15.418 2
# 5 13.533 -15.417 3
# 6 13.533 -15.417 3
# 7 13.533 -15.417 3
# 8 13.534 -14.935 4
# 9 13.534 -14.935 4
# 10 13.534 -15.917 1
# 11 13.367 -14.619 5
编辑:@ Spacedman建议将drop=TRUE
提供给interaction
。
答案 1 :(得分:12)
数据:
dat <- read.table(text="
LAT LONG
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4170
13.5330 -15.4170
13.5330 -15.4170
13.5340 -14.9350
13.5340 -14.9350
13.5340 -15.9170
13.3670 -14.6190", header = TRUE)
这些命令创建一个以1
开头的id变量:
comb <- with(dat, paste(LAT, LONG))
within(dat, Cluster_ID <- match(comb, unique(comb)))
输出:
LAT LONG Cluster_ID
1 13.533 -15.418 1
2 13.533 -15.418 1
3 13.533 -15.418 1
4 13.533 -15.418 1
5 13.533 -15.417 2
6 13.533 -15.417 2
7 13.533 -15.417 2
8 13.534 -14.935 3
9 13.534 -14.935 3
10 13.534 -15.917 4
11 13.367 -14.619 5
答案 2 :(得分:12)
.GRP
已添加到data.table
1.8.3,允许您执行以下操作:
# Your data, as a data.frame
dat <- read.table(text='LAT LONG
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4170
13.5330 -15.4170
13.5330 -15.4170
13.5340 -14.9350
13.5340 -14.9350
13.5340 -15.9170
13.3670 -14.6190', header=TRUE)
# Convert it to a data.table
# with keys as the combination of LAT and LONG
library(data.table)
DT <- data.table(dat, key="LAT,LONG")
DT[, Cluster_ID:=.GRP, by=key(DT)]
DT
# LAT LONG Cluster_ID
# 1: 13.367 -14.619 1
# 2: 13.533 -15.418 2
# 3: 13.533 -15.418 2
# 4: 13.533 -15.418 2
# 5: 13.533 -15.418 2
# 6: 13.533 -15.417 3
# 7: 13.533 -15.417 3
# 8: 13.533 -15.417 3
# 9: 13.534 -15.917 4
# 10: 13.534 -14.935 5
# 11: 13.534 -14.935 5
答案 3 :(得分:3)
比较性能建议的解决方案:
df <- read.table(text='LAT LONG
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4180
13.5330 -15.4170
13.5330 -15.4170
13.5330 -15.4170
13.5340 -14.9350
13.5340 -14.9350
13.5340 -15.9170
13.3670 -14.6190', header=TRUE)
f1 <- function(df, cols) {
df$id <- as.numeric(interaction(df[cols], drop = TRUE))
df
}
f2 <- function(df, cols) {
comb <- do.call(paste, c(as.list(df[cols]), sep = "."))
df$id <- match(comb, unique(comb))
df
}
f2(df, 1:2)
#> LAT LONG id
#> 1 13.533 -15.418 1
#> 2 13.533 -15.418 1
#> 3 13.533 -15.418 1
#> 4 13.533 -15.418 1
#> 5 13.533 -15.417 2
#> 6 13.533 -15.417 2
#> 7 13.533 -15.417 2
#> 8 13.534 -14.935 3
#> 9 13.534 -14.935 3
#> 10 13.534 -15.917 4
#> 11 13.367 -14.619 5
microbenchmark::microbenchmark(f1(df, 1:2), f2(df, 1:2))
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> f1(df, 1:2) 486.400 510.422 575.26659 573.3945 594.1165 1622.243 100 b
#> f2(df, 1:2) 72.952 79.208 86.09265 83.5275 89.7195 159.740 100 a