当将一系列流域多边形(从shapefile)覆盖到SpatialPixelsDataFrame对象上时,我遇到了一个奇怪的问题。有70个集水区,但我收集了60个集水区NA
。
数据在Dropbox上可用,以下脚本将下载,解压缩等文件并创建可重现的示例。
## load packages required
require(rgdal)
require(sp)
## proj4 string
BNG <- CRS("+init=epsg:27700")
## load in the grid
download.file("https://www.dropbox.com/s/7dvcf6ddo6r3043/depogrid.rds?dl=1",
"./depogrid.rds", method = "wget")
myGrid <- readRDS("depogrid.rds")
## convert to spatial pixels
depo.sp <- SpatialPixelsDataFrame(data.matrix(myGrid[, 1:2]),
data = myGrid[, 3, drop = FALSE],
proj4string = BNG)
## load the shapefile
download.file("https://www.dropbox.com/s/bwzmeumnrja3c0o/dart.zip?dl=1",
"./dart.zip", method = "wget")
unzip("./dart.zip")
shp <- readOGR(".", "DARTall")
## project shp to OSGB36
shp <- spTransform(shp, BNG)
## overlay shapefile on depo grid
depo.dart <- over(shp, depo.sp)
问题是NA
s:
> head(depo.dart)
Deposition
0 NA
1 NA
2 NA
3 NA
4 NA
5 0.2604089
> sum(is.na(depo.dart[,1]))
[1] 60
> nrow(depo.dart)
[1] 70
由于网格覆盖整个英国地区且集水区很小,不应该成为任何NA
,所以我可能做错了!如果是这样,我做错了什么,我该如何解决这个问题呢?我想最终得到Deposition
中70个流域中每个流域的SpatialPixelsDataFrame
(shp
数据)的平均值。
[注意网格是虚拟数据;我无法分发实际的沉积网格,但数据和对象基本上(完全)与depo.sp
相同。
> over(shp, depo.sp, returnList = TRUE)
[[1]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[2]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[3]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[4]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[5]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[6]]
Deposition
3143 0.2604089
[[7]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[8]]
Deposition
3289 0.1139663
[[9]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[10]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[11]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[12]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[13]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[14]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[15]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[16]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[17]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[18]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[19]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[20]]
Deposition
3585 0.8610678
[[21]]
Deposition
3288 0.2242067
[[22]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[23]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[24]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[25]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[26]]
Deposition
3141 0.3296081
[[27]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[28]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[29]]
Deposition
3438 0.3609788
[[30]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[31]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[32]]
Deposition
3287 0.4812801
[[33]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[34]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[35]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[36]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[37]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[38]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[39]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[40]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[41]]
Deposition
3436 0.3223757
[[42]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[43]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[44]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[45]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[46]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[47]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[48]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[49]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[50]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[51]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[52]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[53]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[54]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[55]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[56]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[57]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[58]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[59]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[60]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[61]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[62]]
Deposition
2580 0.2820617
[[63]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[64]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[65]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[66]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[67]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[68]]
Deposition
3141 0.3296081
3287 0.4812801
3288 0.2242067
3438 0.3609788
[[69]]
[1] Deposition
<0 rows> (or 0-length row.names)
[[70]]
[1] Deposition
<0 rows> (or 0-length row.names)
> str(over(shp, depo.sp, returnList = TRUE))
List of 70
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.26
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.114
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.861
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.224
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.33
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.361
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.481
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.322
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 1 obs. of 1 variable:
..$ Deposition: num 0.282
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 4 obs. of 1 variable:
..$ Deposition: num [1:4] 0.33 0.481 0.224 0.361
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
$ :'data.frame': 0 obs. of 1 variable:
..$ Deposition: num(0)
答案 0 :(得分:3)
如果您愿意接受实验并且愿意使用raster
包,那么这是一个可能的解决方案。请告诉我们。
当在栅格上覆盖多边形时,诀窍是指定small = TRUE
,因为多边形的中心并不总是包含细胞中心(参见?extract
)。
如果y表示多边形,则还会相对返回一个值 小多边形(例如小于Raster单个单元格的小多边形* 对象),或具有奇怪形状的多边形,否则没有值 返回是因为它们不包括任何栅格单元中心。
library(raster)
shp.raster <- raster(shp)
depo.sp.raster <- raster(depo.sp)
plot(depo.sp.raster)
plot(shp, add = TRUE)
zoom(depo.sp.raster) # click in the corners around the area to zoom in
plot(shp, add = TRUE)
res.out <- extract(depo.sp.raster, shp, layer = 1, small = TRUE)
table(unlist(lapply(res.out, is.null)))
> head(res.out)
[[1]]
0.0334963
[[2]]
0.2604089
[[3]]
[1] 0.5466648 0.7929624 0.4214012
[[4]]
[1] 0.2604089 0.3149418 0.5343358 0.0334963
[[5]]
0.5561869
[[6]]
0.2604089