找到Python最长重复字符串的有效方法(From Programming Pearls)

时间:2012-11-26 06:57:09

标签: python c suffix-tree suffix-array programming-pearls

编程珍珠的第15.2节

可以在此处查看C代码:http://www.cs.bell-labs.com/cm/cs/pearls/longdup.c

当我使用suffix-array在Python中实现它时:

example = open("iliad10.txt").read()
def comlen(p, q):
    i = 0
    for x in zip(p, q):
        if x[0] == x[1]:
            i += 1
        else:
            break
    return i

suffix_list = []
example_len = len(example)
idx = list(range(example_len))
idx.sort(cmp = lambda a, b: cmp(example[a:], example[b:]))  #VERY VERY SLOW

max_len = -1
for i in range(example_len - 1):
    this_len = comlen(example[idx[i]:], example[idx[i+1]:])
    print this_len
    if this_len > max_len:
        max_len = this_len
        maxi = i

我发现idx.sort步骤非常慢。我认为它很慢,因为Python需要通过值而不是指针传递子字符串(如上面的C代码)。

可以从here

下载测试文件

C代码只需0.3秒即可完成。

time cat iliad10.txt |./longdup 
On this the rest of the Achaeans with one voice were for
respecting the priest and taking the ransom that he offered; but
not so Agamemnon, who spoke fiercely to him and sent him roughly
away. 

real    0m0.328s
user    0m0.291s
sys 0m0.006s

但是对于Python代码,它永远不会在我的计算机上结束(我等了10分钟并将其杀死)

有没有人有想法如何使代码高效? (例如,不到10秒)

4 个答案:

答案 0 :(得分:11)

我的解决方案基于后缀数组。它由 最长公共前缀前缀加倍构成。最坏情况的复杂度是O(n(log n)^ 2)。我的笔记本电脑上的任务“iliad.mb.txt”需要4秒钟。函数suffix_arraylongest_common_substring中的代码很好。后一种功能很短,可以很容易地修改,例如用于搜索10个最长的非重叠子串。如果重复的字符串超过10000个字符,则此Python代码比问题中的original C code (copy here)快。

from itertools import groupby
from operator import itemgetter

def longest_common_substring(text):
    """Get the longest common substrings and their positions.
    >>> longest_common_substring('banana')
    {'ana': [1, 3]}
    >>> text = "not so Agamemnon, who spoke fiercely to "
    >>> sorted(longest_common_substring(text).items())
    [(' s', [3, 21]), ('no', [0, 13]), ('o ', [5, 20, 38])]

    This function can be easy modified for any criteria, e.g. for searching ten
    longest non overlapping repeated substrings.
    """
    sa, rsa, lcp = suffix_array(text)
    maxlen = max(lcp)
    result = {}
    for i in range(1, len(text)):
        if lcp[i] == maxlen:
            j1, j2, h = sa[i - 1], sa[i], lcp[i]
            assert text[j1:j1 + h] == text[j2:j2 + h]
            substring = text[j1:j1 + h]
            if not substring in result:
                result[substring] = [j1]
            result[substring].append(j2)
    return dict((k, sorted(v)) for k, v in result.items())

def suffix_array(text, _step=16):
    """Analyze all common strings in the text.

    Short substrings of the length _step a are first pre-sorted. The are the 
    results repeatedly merged so that the garanteed number of compared
    characters bytes is doubled in every iteration until all substrings are
    sorted exactly.

    Arguments:
        text:  The text to be analyzed.
        _step: Is only for optimization and testing. It is the optimal length
               of substrings used for initial pre-sorting. The bigger value is
               faster if there is enough memory. Memory requirements are
               approximately (estimate for 32 bit Python 3.3):
                   len(text) * (29 + (_size + 20 if _size > 2 else 0)) + 1MB

    Return value:      (tuple)
      (sa, rsa, lcp)
        sa:  Suffix array                  for i in range(1, size):
               assert text[sa[i-1]:] < text[sa[i]:]
        rsa: Reverse suffix array          for i in range(size):
               assert rsa[sa[i]] == i
        lcp: Longest common prefix         for i in range(1, size):
               assert text[sa[i-1]:sa[i-1]+lcp[i]] == text[sa[i]:sa[i]+lcp[i]]
               if sa[i-1] + lcp[i] < len(text):
                   assert text[sa[i-1] + lcp[i]] < text[sa[i] + lcp[i]]
    >>> suffix_array(text='banana')
    ([5, 3, 1, 0, 4, 2], [3, 2, 5, 1, 4, 0], [0, 1, 3, 0, 0, 2])

    Explanation: 'a' < 'ana' < 'anana' < 'banana' < 'na' < 'nana'
    The Longest Common String is 'ana': lcp[2] == 3 == len('ana')
    It is between  tx[sa[1]:] == 'ana' < 'anana' == tx[sa[2]:]
    """
    tx = text
    size = len(tx)
    step = min(max(_step, 1), len(tx))
    sa = list(range(len(tx)))
    sa.sort(key=lambda i: tx[i:i + step])
    grpstart = size * [False] + [True]  # a boolean map for iteration speedup.
    # It helps to skip yet resolved values. The last value True is a sentinel.
    rsa = size * [None]
    stgrp, igrp = '', 0
    for i, pos in enumerate(sa):
        st = tx[pos:pos + step]
        if st != stgrp:
            grpstart[igrp] = (igrp < i - 1)
            stgrp = st
            igrp = i
        rsa[pos] = igrp
        sa[i] = pos
    grpstart[igrp] = (igrp < size - 1 or size == 0)
    while grpstart.index(True) < size:
        # assert step <= size
        nextgr = grpstart.index(True)
        while nextgr < size:
            igrp = nextgr
            nextgr = grpstart.index(True, igrp + 1)
            glist = []
            for ig in range(igrp, nextgr):
                pos = sa[ig]
                if rsa[pos] != igrp:
                    break
                newgr = rsa[pos + step] if pos + step < size else -1
                glist.append((newgr, pos))
            glist.sort()
            for ig, g in groupby(glist, key=itemgetter(0)):
                g = [x[1] for x in g]
                sa[igrp:igrp + len(g)] = g
                grpstart[igrp] = (len(g) > 1)
                for pos in g:
                    rsa[pos] = igrp
                igrp += len(g)
        step *= 2
    del grpstart
    # create LCP array
    lcp = size * [None]
    h = 0
    for i in range(size):
        if rsa[i] > 0:
            j = sa[rsa[i] - 1]
            while i != size - h and j != size - h and tx[i + h] == tx[j + h]:
                h += 1
            lcp[rsa[i]] = h
            if h > 0:
                h -= 1
    if size > 0:
        lcp[0] = 0
    return sa, rsa, lcp

我比more complicated O(n log n)更喜欢这个解决方案,因为Python有一个非常快速的列表排序(list.sort),可能比该文章的方法中必要的线性时间操作更快,应该是非常的O(n)随机字符串的特殊推定和小字母表(典型的DNA基因组分析)。我在Gog 2011中读到,我的算法的恶例O(n log n)实际上比许多O(n)算法更快,不能使用CPU内存缓存。

如果文本包含8 kB长的重复字符串,则基于grow_chains的另一个答案中的代码比问题中的原始示例慢19倍。长期重复的文本对于古典文献来说并不典型,但它们经常出现在在“独立”学校的家庭作业集合。该计划不应该冻结它。

我为Python 2.7,3.3 - 3.6编写了an example and tests with the same code

答案 1 :(得分:4)

主要问题似乎是python通过副本切片:https://stackoverflow.com/a/5722068/538551

您必须使用memoryview来获取引用而不是副本。当我这样做时,程序挂起 idx.sort函数(非常快)。

我确信通过一些工作,你可以让其余的工作。

修改

上述更改不能作为替代品使用,因为cmpstrcmp的工作方式不同。例如,尝试以下C代码:

#include <stdio.h>
#include <string.h>

int main() {
    char* test1 = "ovided by The Internet Classics Archive";
    char* test2 = "rovided by The Internet Classics Archive.";
    printf("%d\n", strcmp(test1, test2));
}

将结果与此python进行比较:

test1 = "ovided by The Internet Classics Archive";
test2 = "rovided by The Internet Classics Archive."
print(cmp(test1, test2))

C代码在我的机器上打印-3,而python版本打印-1。看起来示例C代码滥用strcmp的返回值(毕竟它在qsort中使用)。我找不到有关strcmp何时会返回[-1, 0, 1]以外的内容的任何文档,但在原始代码中向printf添加pstrcmp会显示很多值以外的内容该范围(3,-31,5是前3个值)。

要确保-3不是某些错误代码,如果我们反向test1和test2,我们将获得3

修改

以上是有趣的琐事,但在影响任何代码块方面实际上并不正确。当我关闭笔记本电脑并离开wifi区域时,我意识到这一点......在我点击Save之前,我应该仔细检查一切。

FWIW,cmp肯定适用于memoryview个对象(按预期打印-1):

print(cmp(memoryview(test1), memoryview(test2)))

我不确定为什么代码没有按预期工作。在我的机器上打印出列表看起来并不像预期的那样。我会调查一下,并尝试找到一个更好的解决方案,而不是抓住稻草。

答案 2 :(得分:4)

将算法转换为Python:

from itertools import imap, izip, starmap, tee
from os.path   import commonprefix

def pairwise(iterable): # itertools recipe
    a, b = tee(iterable)
    next(b, None)
    return izip(a, b)

def longest_duplicate_small(data):
    suffixes = sorted(data[i:] for i in xrange(len(data))) # O(n*n) in memory
    return max(imap(commonprefix, pairwise(suffixes)), key=len)

buffer()允许在不复制的情况下获取子字符串:

def longest_duplicate_buffer(data):
    n = len(data)
    sa = sorted(xrange(n), key=lambda i: buffer(data, i)) # suffix array
    def lcp_item(i, j):  # find longest common prefix array item
        start = i
        while i < n and data[i] == data[i + j - start]:
            i += 1
        return i - start, start
    size, start = max(starmap(lcp_item, pairwise(sa)), key=lambda x: x[0])
    return data[start:start + size]

iliad.mb.txt我的机器需要5秒钟。

原则上,可以使用suffix array增加lcp array在O(n)时间和O(n)内存中找到副本。


注意:*_memoryview()版本

已弃用*_buffer()

更高效的内存版本(与longest_duplicate_small()相比):

def cmp_memoryview(a, b):
    for x, y in izip(a, b):
        if x < y:
            return -1
        elif x > y:
            return 1
    return cmp(len(a), len(b))

def common_prefix_memoryview((a, b)):
    for i, (x, y) in enumerate(izip(a, b)):
        if x != y:
            return a[:i]
    return a if len(a) < len(b) else b

def longest_duplicate(data):
    mv = memoryview(data)
    suffixes = sorted((mv[i:] for i in xrange(len(mv))), cmp=cmp_memoryview)
    result = max(imap(common_prefix_memoryview, pairwise(suffixes)), key=len)
    return result.tobytes()

iliad.mb.txt在我的机器上需要17秒。结果是:

On this the rest of the Achaeans with one voice were for respecting
the priest and taking the ransom that he offered; but not so Agamemnon,
who spoke fiercely to him and sent him roughly away. 

我必须定义自定义函数来比较memoryview个对象,因为memoryview比较要么在Python 3中引发异常,要么在Python 2中产生错误的结果:

>>> s = b"abc"
>>> memoryview(s[0:]) > memoryview(s[1:])
True
>>> memoryview(s[0:]) < memoryview(s[1:])
True

相关问题:

Find the longest repeating string and the number of times it repeats in a given string

finding long repeated substrings in a massive string

答案 3 :(得分:0)

使用完全不同的算法在我的大约2007桌面上使用此版本大约需要17秒:

#!/usr/bin/env python

ex = open("iliad.mb.txt").read()

chains = dict()

# populate initial chains dictionary
for (a,b) in enumerate(zip(ex,ex[1:])) :
    s = ''.join(b)
    if s not in chains :
        chains[s] = list()

    chains[s].append(a)

def grow_chains(chains) :
    new_chains = dict()
    for (string,pos) in chains :
        offset = len(string)
        for p in pos :
            if p + offset >= len(ex) : break

            # add one more character
            s = string + ex[p + offset]

            if s not in new_chains :
                new_chains[s] = list()

            new_chains[s].append(p)
    return new_chains

# grow and filter, grow and filter
while len(chains) > 1 :
    print 'length of chains', len(chains)

    # remove chains that appear only once
    chains = [(i,chains[i]) for i in chains if len(chains[i]) > 1]

    print 'non-unique chains', len(chains)
    print [i[0] for i in chains[:3]]

    chains = grow_chains(chains)

基本思想是创建一个子串和位置列表,从而无需一次又一次地比较相同的字符串。结果列表看起来像[('ind him, but', [466548, 739011]), (' bulwark bot', [428251, 428924]), (' his armour,', [121559, 124919, 193285, 393566, 413634, 718953, 760088])]。删除了唯一的字符串。然后每个列表成员增加1个字符并创建新列表。再次删除唯一字符串。依此类推......