我知道对于单维数组x=a[i]
相当于x=*(a+i)
,但是如何使用指针访问二维数组的元素?
答案 0 :(得分:52)
摘要:如果您将多维数组定义为int [][]
,则x = y[a][b]
相当于x = *((int *)y + a * NUMBER_OF_COLUMNS + b);
无聊细节:
上面(int *)
的{{1}}演员应该得到一些解释,因为它的必要性可能不是直觉上的。要了解为什么必须考虑以下因素:
C / C ++中的类型指针运算总是通过标量加/减/递增/递减时的字节数类型的大小调整类型指针值(地址)
多维数组声明的基本类型(不是元素类型; 变量类型)是一维维度的数组类型比最后的维度。
后者(#2)确实需要一个固化的例子。在下文中,变量y
和ar1
是等效的声明。
ar2
现在指针算术部分。正如类型结构指针可以按字节结构的大小前进,因此可以跳过数组的完整维度。如果您在我上面声明ar2时想到多维数组,这将更容易理解:
int ar1[5][5]; // an array of 5 rows of 5 ints.
typedef int Int5Array[5]; // type is an array of 5 ints
Int5Array ar2[5]; // an array of 5 Int5Arrays.
所有这一切都消失了:
int (*arptr)[5] = ar1; // first row, address of ar1[0][0].
++arptr; // second row, address of ar[1][0].
因此,在对二维数组执行指针运算时,以下方法不能在多维数组的int *ptr = ar1; // first row, address of ar1[0][0].
++ptr; // first row, address of ar1[0][1].
处获取元素:
[2][2]
当你记得#define NUMBER_OF_COLUMNS 5
int y[5][NUMBER_OF_COLUMNS];
int x = *(y + 2 * NUMBER_OF_COLUMNS + 2); // WRONG
是一个数组数组(声明性地说)时,原因是显而易见的。将缩放器y
添加到(2*5 + 2)
的指针算法将添加12个行,从而计算和地址相当于y
,这显然不对,并且事实上,要么在编译时抛出一个胖警告,要么完全无法编译。使用&(y[12])
的强制转换避免了这种情况,并且表达式的结果类型基于裸指针到int:
(int*)y
答案 1 :(得分:23)
在C中,2D阵列是连续的一系列线(不像Pascal那样) 当我们创建一个包含4行和5列的整数表时:
我们可以通过以下方式与大家联系:
int element = table[row-1][column-1];
但我们也可以使用以下代码执行此操作:
int element = *(*(table+row-1)+column-1);
在这些示例中,row
和column
从1开始计算,这就是-1的原因。
在以下代码中,您可以测试两种技术是否正确。在这种情况下,我们计算从0开始的行和列。
#include <stdio.h>
#include <stdlib.h>
#define HEIGHT 4
#define WIDTH 5
int main()
{
int table[HEIGHT][WIDTH] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20};
int row = 2;
int column = 2;
int a = *(*(table+row)+column);
printf("%d\n",a);//13
printf("%d\n",table[row][column]);//13
return 0;
}
这是一个双精算算术,因此table
指向第一行,*table
指向第一个元素,如果你取消它,则**table
将返回第一行的值元件。在以下示例中,您可以看到*table
和table
指向相同的内存地址。
printf("%d\n",table);//2293476
printf("%d\n",*table);//2293476
printf("%d\n",**table);//1
在内存中,表的所有行都是相互跟随的。因为如果我们在表中添加所需元素所在的行号,table
指向第一行,我们将得到一个指向该行的指针。在这种情况下,*(table+row)
将包含给定行的第一个元素的地址。现在我们只需要添加像*(table+row)+column
这样的列号,我们就会得到给定行和列中元素的地址。如果我们取消这个,我们得到这个元素的确切值
因此,如果我们从零开始计算行和列,我们就可以从表中获取元素:
int element = *(*(table+row)+column);
答案 2 :(得分:18)
2D阵列被视为1D阵列的阵列。也就是说,2D阵列中的每一行都是一维阵列。因此给定2D数组A
,
int A[m][n].
一般来说,
A[i][j] = *(A[i]+j)
也
A[i] = *(A+i)
所以,
A[i][j] = *(A[i]+j) = * ( *(A+i)+j).
答案 3 :(得分:6)
之前的答案已经解释得很清楚, 我会根据我的理解列出指针表达式,并将它们与 arr [i] [j] 格式进行比较。
Pointer expression of 2-D array: the array name itself is a pointer to first sub array, arr: will be pointer to first sub array, not the first element of first sub array, according to relationship of array & pointer, it also represent the array itself, arr+1: will be pointer to second sub array, not the second element of first sub array, *(arr+1): will be pointer to first element of second sub array, according to relationship of array & pointer, it also represent second sub array, same as arr[1], *(arr+1)+2: will be pointer to third element of second sub array, *(*(arr+1)+2): will get value of third element of second sub array, same as arr[1][2],
与2-D阵列类似, multiple-D 阵列具有相似的表达式。
答案 4 :(得分:2)
使用指针进行访问的实用方法。
typedef struct
{
int Array[13][2];
} t2DArray;
t2DArray TwoDArray =
{
{ {12,5},{4,8},{3,6},{7,9},{3,2},{3,3},{3,4},{3,5},{3,6},{3,7},{4,0},{5,0},{5,1} }
};
t2DArray *GetArray;
int main()
{
GetArray = &TwoDArray;
printf("\n %d\n %d\n %d\n %d\n %d\n %d\n",
GetArray->Array[0][0],
GetArray->Array[0][1],
GetArray->Array[1][0],
GetArray->Array[1][1],
GetArray->Array[2][0],
GetArray->Array[2][1]);
getchar();
return 0;
}
12 5 4 8 3 6
答案 5 :(得分:0)
#include <iostream>
using namespace std;
int main()
{
//FOR 1-D ARRAY THROUGH ARRAY
int brr[5]= {1,2,3,4,5};
for(int i=0; i<5; i++)
{
cout<<"address ["<<i<<"] = " <<&brr[i]<<" and value = "<<brr[i]<<endl;
}
//FOR 1-D ARRAY THROUGH POINTER
cout<<endl; // endl TO MAKE OUT PUT LOOK CLEAR AND COOL :)
int (*q)=brr;
for(int i=0; i<5; i++)
{
cout<<"address ["<<i<<"] = " <<&brr[i]<<" and value = "<<*(q+i)<<endl; //(p[i][j])
}
cout<<endl;
//FOR 2-D ARRAY THROUGH ARRAY
int arr[2][3] = {1,2,3,4,5,6};
for(int i=0; i<2; i++)
{
for(int j=0; j<3; j++)
{
cout<<"address ["<<i<<"]["<<j<<"] = " <<&arr[i][j]<<" and value = "<<arr[i][j]<<endl;
}
}
//FOR 2-D ARRAY THROUGH POINTER
int (*p)[3]=arr; // j value we give
cout<<endl;
for(int i=0; i<2; i++)
{
for(int j=0; j<3; j++)
{
cout<<"address ["<<i<<"]["<<j<<"] = " <<(*(p+i)+j)<<" and value = "<<(*(*(p+i)+j))<<endl; //(p[i][j])
}
}
return 0;
}
==============OUT PUT======================
//FOR 1-D ARRAY THROUGH ARRAY
address [0] = 0x28fed4 and value = 1
address [1] = 0x28fed8 and value = 2
address [2] = 0x28fedc and value = 3
address [3] = 0x28fee0 and value = 4
address [4] = 0x28fee4 and value = 5
//FOR 1-D ARRAY THROUGH POINTER
address [0] = 0x28fed4 and value = 1
address [1] = 0x28fed8 and value = 2
address [2] = 0x28fedc and value = 3
address [3] = 0x28fee0 and value = 4
address [4] = 0x28fee4 and value = 5
//FOR 2-D ARRAY THROUGH ARRAY
address [0][0] = 0x28fee8 and value = 1
address [0][1] = 0x28feec and value = 2
address [0][2] = 0x28fef0 and value = 3
address [1][0] = 0x28fef4 and value = 4
address [1][1] = 0x28fef8 and value = 5
address [1][2] = 0x28fefc and value = 6
//FOR 2-D ARRAY THROUGH POINTER
address [0][0] = 0x28fee8 and value = 1
address [0][1] = 0x28feec and value = 2
address [0][2] = 0x28fef0 and value = 3
address [1][0] = 0x28fef4 and value = 4
address [1][1] = 0x28fef8 and value = 5
address [1][2] = 0x28fefc and value = 6