您好:只是一个简单的问题..我希望。 我试图使用这个程序从语料库中生成随机文本...在这种情况下是书的一部分。
我有一个文本文件是我的语料库:(这是介绍,不会在这里发布整个内容)
The Project Gutenberg EBook of My Man Jeeves, by P. G. Wodehouse
#27 in our series by P. G. Wodehouse
Copyright laws are changing all over the world. Be sure to check the
copyright laws for your country before downloading or redistributing
this or any other Project Gutenberg eBook.
This header should be the first thing seen when viewing this Project
Gutenberg file. Please do not remove it. Do not change or edit the
header without written permission.
Please read the "legal small print," and other information about the
eBook and Project Gutenberg at the bottom of this file. Included is
important information about your specific rights and restrictions in
how the file may be used. You can also find out about how to make a
donation to Project Gutenberg, and how to get involved.
etc etc etc
接下来我有我想要使用的课程:
import random
class Markov(object):
def __init__(self, open_file):
self.cache = {}
self.open_file = open_file
self.words = self.file_to_words()
self.word_size = len(self.words)
self.database()
def file_to_words(self):
self.open_file.seek(0)
data = self.open_file.read()
words = data.split()
return words
def triples(self):
""" Generates triples from the given data string. So if our string were
"What a lovely day", we'd generate (What, a, lovely) and then
(a, lovely, day).
"""
if len(self.words) < 3:
return
for i in range(len(self.words) - 2):
yield (self.words[i], self.words[i+1], self.words[i+2])
def database(self):
for w1, w2, w3 in self.triples():
key = (w1, w2)
if key in self.cache:
self.cache[key].append(w3)
else:
self.cache[key] = [w3]
def generate_markov_text(self, size=25):
seed = random.randint(0, self.word_size-3)
seed_word, next_word = self.words[seed], self.words[seed+1]
w1, w2 = seed_word, next_word
gen_words = []
for i in xrange(size):
gen_words.append(w1)
w1, w2 = w2, random.choice(self.cache[(w1, w2)])
gen_words.append(w2)
return ' '.join(gen_words)
最后给出错误的主要内容:“'Markov'对象没有属性'file_to_words'”
import Class
file_ = open('derp.txt')
markov = Class.Markov(file_)
markov.generate_markov_text()
这里出了什么问题?感谢。
答案 0 :(得分:2)
您需要缩进file_to_words
方法,以使其成为Markov类的一部分。目前的方式是Class
函数中的模块级函数。将file_to_words
方法中的所有内容(包括def
行)向右移动4个空格。
更新:所有其他方法也是如此。 Python使用空格/缩进来表示范围。
答案 1 :(得分:1)
根据您发布的代码,除了init之外的所有方法都不属于Markov类,因为缩进。