我遇到了一段需要很长时间才能执行的代码的挑战,我想知道优化此代码执行时间的关键技巧是什么。我不得不承认输入data.frame很重要(140,000行),输出data.frame大约是220,000行。
输入data.frame的示例:
head(extremes)
X_BusinessIDDescription min max month
ID105 2007-12-01 2008-06-01 2007-12-01
ID206 2007-12-01 2009-07-01 2007-12-01
ID204 2007-12-01 2008-02-01 2007-12-01
ID785 2008-07-01 2010-08-01 2008-07-01
ID125 2007-11-01 2008-07-01 2007-11-01
ID107 2007-11-01 2011-06-01 2007-11-01
将使用循环扩展的data.frame。启动data.frame以使结构到位。
output <- extremes[1,]
output
X_BusinessIDDescription min max month
ID105 2007-12-01 2008-06-01 2007-12-01
其他值
IDcounter <- 1
IDmax <- nrow(extremes)
linecounter <- 1
我想优化的while循环:
while (IDcounter <= IDmax){
start <- extremes$min[IDcounter]
end <- extremes$max[IDcounter] # add three months
while(start <= end){
output[linecounter,] <- extremes[IDcounter,]
output$month[linecounter] <- start
linecounter <- linecounter+1
start <- seq(start, by ="month", length=2)[2]
}
IDcounter <- IDcounter + 1
}
对于少量行,此代码执行得非常快,但似乎随着输出的扩展而减慢。
输出看起来像这样:
head(output)
X_BusinessIDDescription min max month
ID105 2007-12-01 2008-06-01 2007-12-01
ID105 2007-12-01 2008-06-01 2008-01-01
ID105 2007-12-01 2008-06-01 2008-02-01
ID105 2007-12-01 2008-06-01 2008-03-01
ID105 2007-12-01 2008-06-01 2008-04-01
ID105 2007-12-01 2008-06-01 2008-05-01
对于极端文件中min和max之间的间隔中的每个月,都会创建一行。
我也有兴趣了解这段代码如何能够为可用的多核计算资源做好准备。好吧,我承认这不是一个真正的优化,但它会减少执行时间,这也很重要。
Jochem
答案 0 :(得分:2)
正如@CarlWitthoft已经提到的,由于许多重复的数据,你必须重新考虑你的数据结构。
在这里您可以找到一种简单的矢量化方法:
## create all possible ranges of months
ranges <- mapply(function(mi, ma) {seq(from=mi, to=ma, by="month")}, mi=extremes$min, ma=extremes$max)
## how many months per ID?
n <- unlist(lapply(ranges, length))
## create new data.frame
output <- data.frame(X_BusinessIDDescription=rep(extremes$X_BusinessIDDescription, n),
min=rep(extremes$min, n),
max=rep(extremes$max, n),
month=as.Date(unlist(ranges), origin="1970-01-01"), stringsAsFactors=FALSE)
与您的方法比较:
extremes <- data.frame(X_BusinessIDDescription=c("ID105", "ID206", "ID204", "ID785", "ID125", "ID107"),
min=as.Date(c("2007-12-01", "2007-12-01", "2007-12-01", "2008-07-01", "2007-11-01", "2007-11-01")),
max=as.Date(c("2008-06-01", "2009-07-01", "2008-02-01", "2010-08-01", "2008-07-01", "2011-06-01")),
month=as.Date(c("2007-12-01", "2007-12-01", "2007-12-01", "2008-07-01", "2007-11-01", "2007-11-01")),
stringsAsFactors=FALSE)
approachWhile <- function(extremes) {
output <- data.frame(X_BusinessIDDescription=NA, min=as.Date("1970-01-01"), max=as.Date("1970-01-01"), month=as.Date("1970-01-01"), stringsAsFactors=FALSE)
IDcounter <- 1
IDmax <- nrow(extremes)
linecounter <- 1
while (IDcounter <= IDmax){
start <- extremes$min[IDcounter]
end <- extremes$max[IDcounter] # add three months
while(start <= end){
output[linecounter,] <- extremes[IDcounter,]
output$month[linecounter] <- start
linecounter <- linecounter+1
start <- seq(start, by ="month", length=2)[2]
}
IDcounter <- IDcounter + 1
}
return(output)
}
approachMapply <- function(extremes) {
ranges <- mapply(function(mi, ma) {seq(from=mi, to=ma, by="month")}, mi=extremes$min, ma=extremes$max)
n <- unlist(lapply(ranges, length))
output <- data.frame(X_BusinessIDDescription=rep(extremes$X_BusinessIDDescription, n),
min=rep(extremes$min, n),
max=rep(extremes$max, n),
month=as.Date(unlist(ranges), origin="1970-01-01"), stringsAsFactors=FALSE)
return(output)
}
identical(approachWhile(extremes), approachMapply(extremes)) ## TRUE
library("rbenchmark")
benchmark(approachWhile(extremes), approachMapply(extremes), order="relative")
# test replications elapsed relative user.self sys.self
#2 approachMapply(extremes) 100 0.176 1.00 0.172 0.000
#1 approachWhile(extremes) 100 6.102 34.67 6.077 0.008