我实现了FR测试here,现在我想通过在R中可视化生成的最小生成树来测试它。顶点和边应该在坐标系中绘制。
此外,我想为每个点设置颜色(取决于它所属的样本),并通过点的大小表示可能的第三维。
这是我到目前为止所得到的:
library(ggplot2)
nodes <- data.frame(cbind(c("A", "A", "A", "B", "B", "B"), c(1,2,3,8,2,1), c(6,3,1,4,5,6)))
edges <- data.frame(cbind(c("A", "A", "A"), c("A", "B", "B"), c(1,3,2), c(6,1,5), c(2,8,1), c(3,4,6)))
p <- ggplot() +
geom_point(nodes, aes(x=nodes[,2], y=nodes[,3])) +
geom_line(edges)
p
答案 0 :(得分:2)
我也认为igraph
在这里最好......
nodes <- data.frame(a=c("A", "A", "A", "B", "B", "B"), b=c(1,2,3,8,2,1),
d=c(6,3,1,4,5,6))
#cbind made your nodes characters so i have removed it here
edges <- data.frame(a=c("A", "A", "A"), b=c("A", "B", "B"), d=c(1,3,2),
e=c(6,1,5), f=c(2,8,1), g=c(3,4,6))
以下是使用上述数据的示例,使用坐标布局系统colouring
生成颜色coords
library(igraph)
from <- c(rep(edges[,3],3),rep(edges[,4],2),edges[,5])
to <- c(edges[,4],edges[,5],edges[,6],edges[,5],edges[,6],edges[,6])
myedges <- data.frame(from,to)
actors <- data.frame(acts=c(1,2,3,4,5,6,8))
colouring <- sample(colours(), 7)
sizes <- sample(15,7)
coords<-cbind(x=runif(7,0,1),y=runif(7,0,1))
myg <- graph.data.frame(myedges, vertices=actors, directed=FALSE)
V(myg)$colouring <- colouring
V(myg)$sizes <- sizes
plot(myg,vertex.color=V(myg)$colouring,vertex.size=V(myg)$sizes,
layout=coords,edge.color="#55555533")
用于绘制跨度,还有很多选项,例如
d <- c(1,2,3)
E(myg)$colouring <- "#55555533"
E(myg, path=d)$colouring <- "red"
V(myg)[ d ]$colouring <- "red"
plot(myg,vertex.color=V(myg)$colouring,vertex.size=V(myg)$sizes
,edge.width=3,layout=coords,edge.color=E(myg)$colouring )
有轴:
plot(myg,vertex.color=V(myg)$colouring,vertex.size=V(myg)$sizes
,edge.width=3,layout=coords,edge.color=E(myg)$colouring, axes=TRUE )
并使用rescale=FALSE
来保持原始轴的缩放