已经发布了对第二个索引的切片可以在多索引的pandas系列上完成:
import numpy as np
import pandas as pd
buckets = np.repeat(range(3), [3,5,7])
sequence = np.hstack(map(range,[3,5,7]))
s = pd.Series(np.random.randn(len(sequence)),
index=pd.MultiIndex.from_tuples(zip(buckets, sequence)))
print s
0 0 0.021362
1 0.917947
2 -0.956313
1 0 -0.242659
1 0.398657
2 0.455909
3 0.200061
4 -1.273537
2 0 0.747849
1 -0.012899
2 1.026659
3 -0.256648
4 0.799381
5 0.064147
6 0.491336
然后要获得第一个索引的前三行= 1,您只需说:
s[1].ix[range(3)]
0 -0.242659
1 0.398657
2 0.455909
这适用于1维系列,但不适用于DataFrames:
buckets = np.repeat(range(3), [3,5,7])
sequence = np.hstack(map(range,[3,5,7]))
d = pd.DataFrame(np.random.randn(len(sequence),2),
index=pd.MultiIndex.from_tuples(zip(buckets, sequence)))
print d
0 1
0 0 1.217659 0.312286
1 0.559782 0.686448
2 -0.143116 1.146196
1 0 -0.195582 0.298426
1 1.504944 -0.205834
2 0.018644 -0.979848
3 -0.387756 0.739513
4 0.719952 -0.996502
2 0 0.065863 0.481190
1 -1.309163 0.881319
2 0.545382 2.048734
3 0.506498 0.451335
4 0.872743 -0.070985
5 -1.160473 1.082550
6 0.331796 -0.366597
d[1].ix[range(3)]
0 0 0.312286
1 0.686448
2 1.146196
Name: 1
它为您提供“第1”列数据和前三行,与第一个索引级别无关。对于多索引DataFrame,如何获得第一个索引的前三行= 1?
答案 0 :(得分:3)
d.xs(1)[0:3]
0 1
0 -0.716206 0.119265
1 -0.782315 0.097844
2 2.042751 -1.116453
答案 1 :(得分:0)
.loc效率更高,同时评估
s.loc [pd.IndexSlice [1],:3]将返回0级= 1和[0:3]条目。